Suppr超能文献

运用文本挖掘技术识别存在患者安全问题的医疗服务提供者:探索性研究。

Using Text Mining Techniques to Identify Health Care Providers With Patient Safety Problems: Exploratory Study.

作者信息

Hendrickx Iris, Voets Tim, van Dyk Pieter, Kool Rudolf B

机构信息

Centre for Language Studies, Centre for Language and Speech Technology, Faculty of Arts, Radboud University, Nijmegen, Netherlands.

Dutch Health and Youth Care Inspectorate, Utrecht, Netherlands.

出版信息

J Med Internet Res. 2021 Jul 27;23(7):e19064. doi: 10.2196/19064.

Abstract

BACKGROUND

Regulatory bodies such as health care inspectorates can identify potential patient safety problems in health care providers by analyzing patient complaints. However, it is challenging to analyze the large number of complaints. Text mining techniques may help identify signals of problems with patient safety at health care providers.

OBJECTIVE

The aim of this study was to explore whether employing text mining techniques on patient complaint databases can help identify potential problems with patient safety at health care providers and automatically predict the severity of patient complaints.

METHODS

We performed an exploratory study on the complaints database of the Dutch Health and Youth Care Inspectorate with more than 22,000 written complaints. Severe complaints are defined as those cases where the inspectorate contact point experts deemed it worthy of a triage by the inspectorate, or complaints that led to direct action by the inspectorate. We investigated a range of supervised machine learning techniques to assign a severity label to complaints that can be used to prioritize which incoming complaints need the most attention. We studied several features based on the complaints' written content, including sentiment analysis, to decide which were helpful for severity prediction. Finally, we showcased how we could combine these severity predictions and automatic keyword analysis on the complaints database and listed health care providers and their organization-specific complaints to determine the average severity of complaints per organization.

RESULTS

A straightforward text classification approach using a bag-of-words feature representation worked best for the severity prediction of complaints. We obtained an accuracy of 87%-93% (2658-2990 of 3319 complaints) on the held-out test set and an F1 score of 45%-51% on the severe complaints. The skewed class distribution led to only reasonable recall (47%-54%) and precision (44%-49%) scores. The use of sentiment analysis for severity prediction was not helpful. By combining the predicted severity outcomes with an automatic keyword analysis, we identified several health care providers that could have patient safety problems.

CONCLUSIONS

Text mining techniques for analyzing complaints by civilians can support inspectorates. They can automatically predict the severity of the complaints, or they can be used for keyword analysis. This can help the inspectorate detect potential patient safety problems, or support prioritizing follow-up supervision activities by sorting complaints based on the severity per organization or per sector.

摘要

背景

诸如医疗保健监察机构等监管机构可以通过分析患者投诉来识别医疗保健机构中潜在的患者安全问题。然而,分析大量投诉具有挑战性。文本挖掘技术可能有助于识别医疗保健机构中患者安全问题的信号。

目的

本研究的目的是探讨对患者投诉数据库应用文本挖掘技术是否有助于识别医疗保健机构中潜在的患者安全问题,并自动预测患者投诉的严重程度。

方法

我们对荷兰健康与青年保健监察机构的投诉数据库进行了一项探索性研究,该数据库有超过22000份书面投诉。严重投诉被定义为监察机构联络点专家认为值得监察机构进行分诊的案例,或者导致监察机构采取直接行动的投诉。我们研究了一系列监督机器学习技术,为投诉分配严重程度标签,以便确定哪些新收到的投诉最需要关注。我们基于投诉的书面内容研究了几个特征,包括情感分析,以确定哪些特征有助于严重程度预测。最后,我们展示了如何将这些严重程度预测与投诉数据库上的自动关键词分析相结合,并列出医疗保健机构及其特定组织的投诉,以确定每个组织投诉的平均严重程度。

结果

使用词袋特征表示的简单文本分类方法在投诉严重程度预测方面效果最佳。在留出的测试集上,我们的准确率为87%-93%(3319份投诉中的2658-2990份),在严重投诉上的F1分数为45%-51%。类分布不均衡导致召回率(47%-54%)和精确率(44%-49%)仅为合理水平。使用情感分析进行严重程度预测并无帮助。通过将预测的严重程度结果与自动关键词分析相结合,我们识别出了几家可能存在患者安全问题的医疗保健机构。

结论

用于分析平民投诉的文本挖掘技术可以为监察机构提供支持。它们可以自动预测投诉的严重程度,或者可用于关键词分析。这可以帮助监察机构发现潜在的患者安全问题,或者通过根据每个组织或每个部门的严重程度对投诉进行分类来支持后续监督活动的优先级排序。

相似文献

7
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
10
Using statistical text classification to identify health information technology incidents.利用统计文本分类识别健康信息技术事件。
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):980-5. doi: 10.1136/amiajnl-2012-001409. Epub 2013 May 10.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验