Suppr超能文献

了解患者对所接受医疗服务的满意度:一种自然语言处理方法。

Understanding patient satisfaction with received healthcare services: A natural language processing approach.

作者信息

Doing-Harris Kristina, Mowery Danielle L, Daniels Chrissy, Chapman Wendy W, Conway Mike

机构信息

Westminster College, Salt Lake City, UT.

Department of Biomedical Informatics, University of Utah, Salt Lake City, UT.

出版信息

AMIA Annu Symp Proc. 2017 Feb 10;2016:524-533. eCollection 2016.

Abstract

Important information is encoded in free-text patient comments. We determine the most common topics in patient comments, design automatic topic classifiers, identify comments ' sentiment, and find new topics in negative comments. Our annotation scheme consisted of 28 topics, with positive and negative sentiment. Within those 28 topics, the seven most frequent accounted for 63% of annotations. For automated topic classification, we developed vocabulary-based and Naive Bayes ' classifiers. For sentiment analysis, another Naive Bayes ' classifier was used. Finally, we used topic modeling to search for unexpected topics within negative comments. The seven most common topics were appointment access, appointment wait, empathy, explanation, friendliness, practice environment, and overall experience. The best F-measures from our classifier were 0.52(NB), 0.57(NB), 0.36(Vocab), 0.74(NB), 0.40(NB), and 0.44(Vocab), respectively. F- scores ranged from 0.16 to 0.74. The sentiment classification F-score was 0.84. Negative comment topic modeling revealed complaints about appointment access, appointment wait, and time spent with physician.

摘要

重要信息编码在患者的自由文本评论中。我们确定患者评论中最常见的主题,设计自动主题分类器,识别评论的情感,并在负面评论中发现新主题。我们的注释方案包括28个主题,带有积极和消极情感。在这28个主题中,最频繁出现的7个主题占注释的63%。对于自动主题分类,我们开发了基于词汇的分类器和朴素贝叶斯分类器。对于情感分析,使用了另一个朴素贝叶斯分类器。最后,我们使用主题建模在负面评论中搜索意外主题。最常见的7个主题是预约便利性、预约等待时间、同理心、解释、友好程度、就医环境和总体体验。我们分类器的最佳F值分别为0.52(朴素贝叶斯)、0.57(朴素贝叶斯)、0.36(词汇)、0.74(朴素贝叶斯)、0.40(朴素贝叶斯)和0.44(词汇)。F分数范围为0.16至0.74。情感分类F值为0.84。负面评论主题建模揭示了对预约便利性、预约等待时间以及与医生相处时间的抱怨。

相似文献

3
4
Using natural language processing to understand, facilitate and maintain continuity in patient experience across transitions of care.
Int J Med Inform. 2022 Jan;157:104642. doi: 10.1016/j.ijmedinf.2021.104642. Epub 2021 Nov 11.
5
Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives.
J Biomed Inform. 2014 Apr;48:54-65. doi: 10.1016/j.jbi.2013.11.008. Epub 2013 Dec 4.
7
Using sentiment analysis to review patient satisfaction data located on the internet.
J Health Organ Manag. 2015;29(2):221-33. doi: 10.1108/JHOM-12-2011-0129.
8
Natural language processing: A window to understanding skincare trends.
Int J Med Inform. 2022 Apr;160:104705. doi: 10.1016/j.ijmedinf.2022.104705. Epub 2022 Jan 24.
10
A naïve bayes approach to classifying topics in suicide notes.
Biomed Inform Insights. 2012;5(Suppl. 1):87-97. doi: 10.4137/BII.S8945. Epub 2012 Jan 30.

引用本文的文献

6
Opportunities for the use of large language models in hepatology.
Clin Liver Dis (Hoboken). 2023 Sep 13;22(5):171-176. doi: 10.1097/CLD.0000000000000075. eCollection 2023 Nov.
7
Artificial intelligence technologies and compassion in healthcare: A systematic scoping review.
Front Psychol. 2023 Jan 17;13:971044. doi: 10.3389/fpsyg.2022.971044. eCollection 2022.
9
Artificial intelligence and machine learning in precision and genomic medicine.
Med Oncol. 2022 Jun 15;39(8):120. doi: 10.1007/s12032-022-01711-1.
10
Analysis of a national response to a White House directive for ending veteran suicide.
Health Serv Res. 2022 Jun;57 Suppl 1(Suppl 1):32-41. doi: 10.1111/1475-6773.13931. Epub 2022 Mar 3.

本文引用的文献

1
Sentiment Measured in Hospital Discharge Notes Is Associated with Readmission and Mortality Risk: An Electronic Health Record Study.
PLoS One. 2015 Aug 24;10(8):e0136341. doi: 10.1371/journal.pone.0136341. eCollection 2015.
2
Web-based textual analysis of free-text patient experience comments from a survey in primary care.
JMIR Med Inform. 2015 May 6;3(2):e20. doi: 10.2196/medinform.3783.
4
Tweets about hospital quality: a mixed methods study.
BMJ Qual Saf. 2014 Oct;23(10):838-46. doi: 10.1136/bmjqs-2014-002875. Epub 2014 Apr 19.
5
Patient satisfaction: history, myths, and misperceptions.
Virtual Mentor. 2013 Nov 1;15(11):982-7. doi: 10.1001/virtualmentor.2013.15.11.mhst1-1311.
6
Use of sentiment analysis for capturing patient experience from free-text comments posted online.
J Med Internet Res. 2013 Nov 1;15(11):e239. doi: 10.2196/jmir.2721.
7
Eight questions about physician-rating websites: a systematic review.
J Med Internet Res. 2013 Feb 1;15(2):e24. doi: 10.2196/jmir.2360.
9
Online reviews of 500 urologists.
J Urol. 2013 Jun;189(6):2269-73. doi: 10.1016/j.juro.2012.12.013. Epub 2012 Dec 7.
10
What patients say about their doctors online: a qualitative content analysis.
J Gen Intern Med. 2012 Jun;27(6):685-92. doi: 10.1007/s11606-011-1958-4. Epub 2012 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验