Dahodwala Nabila, Pettit Amy R, Jahnke Jordan, Li Pengxiang, Ladage Vrushabh P, Kandukuri Prasanna L, Zamudio Jorge, Jalundhwala Yash J, Doshi Jalpa A
Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 330 South 9th Street, 2nd Floor, Philadelphia, PA 19107, USA.
Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA, USA.
Clin Park Relat Disord. 2020 Feb 26;3:100046. doi: 10.1016/j.prdoa.2020.100046. eCollection 2020.
Lack of a gold standard definition for advanced Parkinson's Disease (APD), coupled with absence of disease severity information in diagnostic codes, hinders use of large administrative databases for conducting population health and comparative effectiveness studies.
Using pharmacy claims data, we created an algorithm to identify APD: any 30-day average levodopa equivalent dose (LED) >1000 mg/day. Using 2013 100% U.S. Medicare claims, we applied this algorithm and used multivariate logistic regression to examine associations between assigned APD status and claims-based indicators of PD severity (any deep brain stimulation, fall, hallucinations, walker, wheelchair, specialty bed, dementia diagnosis, skilled nursing facility, hospice), adjusting for sociodemographic, clinical, and treatment characteristics. Levodopa >1000 mg/day, levodopa >800 mg/day and LED >800 mg/day were used in sensitivity analysis.
In our sample ( = 144,703), 20% were assigned APD status based on the LED >1000 mg/day cut-off. This group had significantly higher odds of having each claims-based indicator, compared with those assigned mild-moderate PD status. Odds ratios were highest for indicators for any DBS (OR: 2.96; 95% CI:2.75-3.19) and specialty bed (OR:2.15, 95% CI: 1.99-2.32) and lowest for fall (OR:1.27; 95% CI:1.20-1.34) and dementia diagnosis (OR:1.21; 95% CI:1.18-1.25). Results based on alternative approaches were similar.
Medicare patients classified as having APD via a pharmacy claims-based algorithm had higher odds of having claims-based clinical markers of APD, compared with patients categorized as having mild-moderate PD. This proxy strategy could facilitate future claims-based studies and warrants further refinement and validation using medical records or other clinical sources.
晚期帕金森病(APD)缺乏金标准定义,且诊断编码中缺少疾病严重程度信息,这阻碍了利用大型管理数据库开展人群健康和比较效果研究。
利用药房报销数据,我们创建了一种识别APD的算法:任何30天平均左旋多巴等效剂量(LED)>1000毫克/天。利用2013年100%的美国医疗保险报销数据,我们应用了该算法,并使用多因素逻辑回归分析来研究指定的APD状态与基于报销数据的帕金森病严重程度指标(任何深部脑刺激、跌倒、幻觉、助行器、轮椅、专用床、痴呆诊断、专业护理机构、临终关怀)之间的关联,同时对社会人口学、临床和治疗特征进行了调整。敏感性分析中使用了左旋多巴>1000毫克/天、左旋多巴>800毫克/天和LED>800毫克/天。
在我们的样本(n = 144,703)中,20%的患者基于LED>1000毫克/天的临界值被指定为APD状态。与被指定为轻度至中度帕金森病状态的患者相比,该组患者出现每项基于报销数据的指标的几率显著更高。任何深部脑刺激指标(比值比:2.96;95%置信区间:2.75 - 3.19)和专用床指标(比值比:2.15,95%置信区间:1.99 - 2.32)的比值比最高,跌倒(比值比:1.27;95%置信区间:1.20 - 1.34)和痴呆诊断(比值比:1.21;95%置信区间:1.18 - 1.25)的比值比最低。基于替代方法的结果相似。
与被归类为轻度至中度帕金森病的患者相比,通过基于药房报销数据的算法被归类为患有APD的医疗保险患者出现基于报销数据的APD临床标志物的几率更高。这种替代策略可以促进未来基于报销数据的研究,并且需要使用病历或其他临床来源进行进一步完善和验证。