Department of Chemistry, University of California, Berkeley, California 94720, United States.
Kavli Energy NanoScience Institute, Berkeley, California 94720, United States.
J Am Chem Soc. 2021 Aug 11;143(31):12082-12089. doi: 10.1021/jacs.1c03906. Epub 2021 Jul 28.
Liquid cell electron microscopy enables the study of nanoscale transformations in solvents with high spatial and temporal resolution, but for the technique to achieve its potential requires a new level of control over the reactivity caused by radical generation under electron beam irradiation. An understanding of how to control electron-solvent interactions is needed to further advance the study of structural dynamics for complex materials at the nanoscale. We developed an approach that scavenges radicals with redox species that form well-defined redox couples and control the electrochemical potential . This approach enables the observation of electrochemical structural dynamics at near-atomic resolution with precise control of the liquid environment. Analysis of nanocrystal etching trajectories indicates that this approach can be generalized to several chemical systems. The ability to simultaneously observe heterogeneous reactions at near-atomic resolution and precisely control the electrochemical potential enables the fundamental study of complex nanoscale dynamics with unprecedented detail.
液相电子显微镜能够以高时空分辨率研究溶剂中的纳米尺度转变,但要充分发挥该技术的潜力,就需要对电子束辐照下自由基生成所导致的反应性进行新的控制。为了进一步推进纳米尺度复杂材料结构动力学的研究,需要了解如何控制电子-溶剂相互作用。我们开发了一种方法,用形成确定氧化还原对的氧化还原物种清除自由基,并控制电化学势。该方法可以在近原子分辨率下观察电化学结构动力学,并精确控制液相环境。对纳米晶体刻蚀轨迹的分析表明,该方法可以推广到几种化学体系。这种能够同时在近原子分辨率下观察异质反应并精确控制电化学势的能力,使得对复杂纳米尺度动力学进行前所未有的详细基础研究成为可能。