Suppr超能文献

双能 CT 衍生电子密度值在诊断非小细胞肺癌纵隔转移性淋巴结中的应用:与常规 CT 和 FDG PET/CT 结果的比较。

Dual-Energy CT-Derived Electron Density for Diagnosing Metastatic Mediastinal Lymph Nodes in Non-Small Cell Lung Cancer: Comparison With Conventional CT and FDG PET/CT Findings.

机构信息

Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City 890-8544, Japan.

出版信息

AJR Am J Roentgenol. 2022 Jan;218(1):66-74. doi: 10.2214/AJR.21.26208. Epub 2021 Jul 28.

Abstract

. Accurate nodal staging is essential to guide treatment selection in patients with non-small cell lung cancer (NSCLC). To our knowledge, measurement of electron density (ED) using dual-energy CT (DECT) is unexplored for this purpose. . The purpose of our study was to assess the utility of ED from DECT in diagnosing metastatic mediastinal lymph nodes in patients with NSCLC in comparison with conventional CT and FDG PET/CT. . This retrospective study included 57 patients (36 men, 21 women; mean age, 68.4 ± 8.9 [SD] years) with NSCLC and surgically resected mediastinal lymph nodes who underwent preoperative DECT and FDG PET/CT. The patients had a total of 117 resected mediastinal lymph nodes (33 metastatic, 84 nonmetastatic). Two radiologists independently reviewed the morphologic features of nodes on the 120-kVp images and also measured the iodine concentration (IC) and ED of nodes using maps generated from DECT data; consensus was reached for discrepancies. Two different radiologists assessed FDG PET/CT examinations in consensus for positive node uptake. Diagnostic performance was evaluated for individual and pairwise combinations of features. . The sensitivity, specificity, and accuracy for nodal metastasis were 15.2%, 98.8%, and 75.2% for the presence of necrosis, respectively; 54.5%, 85.7%, and 76.9% for short-axis diameter greater than 8.5 mm; 63.6%, 73.8%, and 70.9% for long-axis diameter greater than 13.0 mm; 51.5%, 79.8%, and 71.8% for attenuation on 120-kVp images of 95.8 HU or less; 87.9%, 58.3%, and 66.7% for ED of 3.48 × 10/cm or less; and 66.7%, 75.0%, and 72.6% for positive FDG uptake. Among pairwise combinations of features, accuracy was highest for the combination of ED and short-axis diameter (accuracy, 82.9%; sensitivity, 54.5%; specificity, 94.0%) and the combination of ED and positive FDG uptake (accuracy, 82.1%; sensitivity, 60.6%; specificity, 90.5%); these accuracies were greater than those for the individual features ( < .05). The remaining combinations exhibited accuracies ranging from 74.4% to 77.8%. Interobserver agreement analysis showed an intraclass correlation coefficient of 0.90 for ED. IC was not significantly different between metastatic and nonmetastatic nodes ( = .18) and was excluded from the diagnostic performance analysis. . ED derived from DECT may help diagnose metastatic lymph nodes in NSCLC given decreased ED in metastatic nodes. . ED may complement conventional CT findings and FDG uptake on PET/CT in diagnosing metastatic nodes.

摘要

. 准确的淋巴结分期对于指导非小细胞肺癌(NSCLC)患者的治疗选择至关重要。据我们所知,使用双能 CT(DECT)测量电子密度(ED)在这方面尚未得到探索。. 本研究的目的是评估 DECT 中 ED 用于诊断 NSCLC 患者转移性纵隔淋巴结的效用,与常规 CT 和 FDG PET/CT 进行比较。. 这项回顾性研究纳入了 57 例(36 名男性,21 名女性;平均年龄 68.4 ± 8.9[标准差]岁)接受了术前 DECT 和 FDG PET/CT 检查且有可手术切除的纵隔淋巴结的 NSCLC 患者。这些患者共有 117 个可切除的纵隔淋巴结(33 个转移性淋巴结,84 个非转移性淋巴结)。两位放射科医生分别独立地对 120-kVp 图像上的淋巴结形态特征进行了评估,并使用从 DECT 数据生成的地图测量了淋巴结的碘浓度(IC)和 ED;对于有差异的情况,达成了共识。两位不同的放射科医生对 FDG PET/CT 检查进行了评估,以达成一致的阳性淋巴结摄取结果。评估了各项特征和两两组合的诊断性能。. 对于存在坏死、短轴直径大于 8.5mm、长轴直径大于 13.0mm、120-kVp 图像衰减值小于等于 95.8HU、ED 值小于等于 3.48×10/cm 和 FDG 摄取阳性的淋巴结转移,其诊断的敏感性、特异性和准确性分别为 15.2%、98.8%和 75.2%;54.5%、85.7%和 76.9%;63.6%、73.8%和 70.9%;51.5%、79.8%和 71.8%;87.9%、58.3%和 66.7%。在特征的两两组合中,ED 和短轴直径的组合(准确性为 82.9%;敏感性为 54.5%;特异性为 94.0%)和 ED 和 FDG 摄取阳性的组合(准确性为 82.1%;敏感性为 60.6%;特异性为 90.5%)的准确性最高;这些准确性均高于单个特征(<0.05)。其余组合的准确性在 74.4%到 77.8%之间。观察者间一致性分析显示 ED 的组内相关系数为 0.90。转移和非转移淋巴结之间的 IC 没有显著差异(=0.18),因此排除在诊断性能分析之外。. 从 DECT 获得的 ED 可能有助于诊断 NSCLC 中的转移性淋巴结,因为转移性淋巴结中的 ED 降低。. ED 可能有助于补充常规 CT 发现和 FDG PET/CT 上的摄取,以诊断转移性淋巴结。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验