Sasaki Tomoaki, Oda Shioto, Kuno Hirofumi, Hiyama Takashi, Taki Tetsuro, Takahashi Shugo, Ishii Genichiro, Tsuboi Masahiro, Kobayashi Tatsushi
Department of Diagnostic Radiology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan.
Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan.
Eur J Radiol Open. 2024 Dec 26;14:100628. doi: 10.1016/j.ejro.2024.100628. eCollection 2025 Jun.
The potential of spectral images, particularly electron density and effective Z-images, generated by dual-energy computed tomography (DECT), for the histopathologic classification of lung cancer remains unclear. This study aimed to explore which imaging factors could better reflect the histopathological status of lung cancer.
The data of 31 patients who underwent rapid kV-switching DECT and subsequently underwent surgery for lung cancer were analyzed. Virtual monochromatic images (VMIs) of 35 keV and 70 keV, virtual non-contrast images (VNC), iodine content images, electron density images, and effective Z-images were reconstructed for the following analyses: 1) correlation with the ratio of the lepidic growth pattern in the whole tumor and 2) comparisons with the four histological groups: well-differentiated adenocarcinoma (WDA), moderately differentiated adenocarcinoma (MDA), and poorly differentiated adenocarcinoma (PDA) and squamous cell carcinoma (SCC).
There were significant correlations between the ratio of lepidic growth pattern and 70 keV, 35 keV, VNC, and electron density images (r = -0.861, P < 0.001; r = -0.791, P < 0.001; r = -0.869, P < 0.001; r = -0.871, P < 0.001, respectively). There were significant differences in the 70 keV, 35 keV, VNC, and electron density images in the Kruskal-Wallis test (P = 0.001, P = 0.006, P < 0.001, P < 0.001, respectively). However, there were no significant differences in iodine content or effective Z-images.
Electron density images generated by spectral imaging may be better indicators of the histopathological classification of lung cancer.
Electron density images may have an added value in predicting the histopathological classification of lung cancer.
•The role of electron density and effective Z-images obtained using dual-energy CT in lung cancer classification remains unclear.•Electron density and virtual non-contrast images correlated better with the ratio of lepidic growth patterns in lung cancer.•Electron density imaging is a better indicator of the histopathological classification of lung cancer than effective Z-imaging.
双能计算机断层扫描(DECT)生成的光谱图像,尤其是电子密度和有效Z图像,在肺癌组织病理学分类中的潜力仍不明确。本研究旨在探索哪些成像因素能更好地反映肺癌的组织病理学状态。
分析31例接受快速kV切换DECT检查并随后接受肺癌手术患者的数据。重建35 keV和70 keV的虚拟单色图像(VMI)、虚拟非增强图像(VNC)、碘含量图像、电子密度图像和有效Z图像,用于以下分析:1)与整个肿瘤中鳞屑样生长模式的比例的相关性;2)与四个组织学组的比较:高分化腺癌(WDA)、中分化腺癌(MDA)、低分化腺癌(PDA)和鳞状细胞癌(SCC)。
鳞屑样生长模式的比例与70 keV、35 keV、VNC和电子密度图像之间存在显著相关性(r分别为=-0.861,P<0.001;r=-0.791,P<0.001;r=-0.869,P<0.001;r=-0.871,P<0.001)。在Kruskal-Wallis检验中,70 keV、35 keV、VNC和电子密度图像存在显著差异(P分别为=0.001,P=0.006,P<0.001,P<0.001)。然而,碘含量或有效Z图像没有显著差异。
光谱成像生成的电子密度图像可能是肺癌组织病理学分类的更好指标。
电子密度图像在预测肺癌组织病理学分类方面可能具有附加价值。
•使用双能CT获得的电子密度和有效Z图像在肺癌分类中的作用仍不明确。•电子密度和虚拟非增强图像与肺癌中鳞屑样生长模式的比例相关性更好。•电子密度成像比有效Z成像更能作为肺癌组织病理学分类的指标。