Suppr超能文献

利用人工智能优化农业废弃物对纺织废水的生物吸附

Use of artificial intelligence for optimizing biosorption of textile wastewater using agricultural waste.

作者信息

Aghilesh K, Kumar Ajay, Agarwal Smriti, Garg Manoj Chandra, Joshi Himanshu

机构信息

Amity Institute of Environmental Sciences, Amity University, Noida, India.

Department of Hydrology, Indian Institute of Technology Roorkee, Roorkee, India.

出版信息

Environ Technol. 2023 Jan;44(1):22-34. doi: 10.1080/09593330.2021.1961874. Epub 2021 Aug 14.

Abstract

Most of the dyes are toxic and non-biodegradable in textile industry wastewaters. Therefore, removal of textile dye using agriculture waste becomes crucial for the environment. This can be accomplished by the biosorption process which is the passive uptake of pollutants by agricultural waste. In this study, Response Surface Methodology (RSM), Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) were used to obtain optimum conditions for Methylene Blue (MB) removal using sugarcane bagasse and peanut hulls as low-cost agricultural waste. The experimental design was carried out to study the effect of temperature, pH, biosorbent amount and dye concentration. The maximum MB dye removal considering the effect of total dissolved solids from aqueous solutions of 74.49% and 67.99% by sugarcane bagasse and peanut hulls, respectively. The models specify that they could predict biosorption with high accuracy having -value above 0.9. Statistical studies for RSM, ANFIS and ANN models were compared. Further, the models were optimized for maximum dye removal was at 1.21 g of biosorbent, pH 5.24, 31.24 mg/L MB concentration, 22.29°C of dye solution using sugarcane bagasse and at 1.37 g of biosorbent, pH 5.77, 36.7 mg/L MB concentration, 26.8°C of dye solution using peanut hulls. Additionally, Fourier Transform Infra-Red (FTIR) spectral analysis was also carried out to confirm the biosorption.

摘要

在纺织工业废水中,大多数染料有毒且不可生物降解。因此,利用农业废弃物去除纺织染料对环境至关重要。这可以通过生物吸附过程来实现,即农业废弃物被动吸收污染物。在本研究中,采用响应面法(RSM)、人工神经网络(ANN)和自适应神经模糊推理系统(ANFIS)来获得使用甘蔗渣和花生壳作为低成本农业废弃物去除亚甲基蓝(MB)的最佳条件。进行实验设计以研究温度、pH值、生物吸附剂用量和染料浓度的影响。考虑到水溶液中总溶解固体的影响,甘蔗渣和花生壳对MB染料的最大去除率分别为74.49%和67.99%。模型表明它们能够以高于0.9的R值高精度预测生物吸附。对RSM、ANFIS和ANN模型进行了统计研究比较。此外,使用甘蔗渣时,模型优化后最大染料去除的条件为:生物吸附剂1.21 g、pH值5.24、MB浓度31.24 mg/L、染料溶液温度22.29°C;使用花生壳时,条件为:生物吸附剂1.37 g、pH值5.77、MB浓度36.7 mg/L、染料溶液温度26.8°C。此外,还进行了傅里叶变换红外(FTIR)光谱分析以确认生物吸附。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验