Emeji Ikenna Chibuzor, Kumi Michael, Meijboom Reinout
Faculty of Science, Department of Chemical Sciences-APK, University of Johannesburg. P.O. Box 524, Auckland Park 2600 Johannesburg 2006, South Africa.
CSIR - Water Research Institute, P.O. Box M32, Accra, Ghana.
ACS Omega. 2024 Jul 29;9(32):34464-34481. doi: 10.1021/acsomega.4c02174. eCollection 2024 Aug 13.
The adaptive neuro-fuzzy inference system (ANFIS), central composite experimental design (CCD)-response surface methodology (RSM), and artificial neural network (ANN) are used to model the oxidation of benzyl alcohol using the -butyl hydroperoxide (TBHP) oxidant to selectively yield benzaldehyde over a mesoporous ceria-zirconia catalyst. Characterization reveals that the produced catalyst has hysteresis loops, a sponge-like structure, and structurally induced reactivity. Three independent variables were taken into consideration while analyzing the ANN, RSM, and ANFIS models: the amount of catalyst (A), reaction temperature (B), and reaction time (C). With the application of optimum conditions, along with a constant (45 mmol) TBHP oxidant amount, (30 mmol) benzyl alcohol amount, and rigorous refluxing of 450 rpm, a maximum optimal benzaldehyde yield of 98.4% was obtained. To examine the acceptability of the models, further sensitivity studies including statistical error functions, analysis of variance (ANOVA) results, and the lack-of-fit test, among others, were employed. The obtained results show that the ANFIS model is the most suited to predicting benzaldehyde yield, followed by RSM. Green chemistry matrix calculations for the reaction reveal lower values of the -factor (1.57), mass intensity (MI, 2.57), and mass productivity (MP, 38%), which are highly desirable for green and sustainable reactions. Therefore, utilizing a ceria-zirconia catalyst synthesized via the inverse micelle method for the oxidation of benzyl alcohol provides a green and sustainable methodology for the synthesis of benzaldehyde under mild conditions.
采用自适应神经模糊推理系统(ANFIS)、中心复合实验设计(CCD)-响应面方法(RSM)和人工神经网络(ANN),以叔丁基过氧化氢(TBHP)为氧化剂,在介孔氧化铈-氧化锆催化剂上对苯甲醇氧化反应进行建模,以选择性生成苯甲醛。表征结果表明,所制备的催化剂具有滞后环、海绵状结构和结构诱导的反应活性。在分析ANN、RSM和ANFIS模型时考虑了三个独立变量:催化剂用量(A)、反应温度(B)和反应时间(C)。在最佳条件下,保持TBHP氧化剂用量恒定(45 mmol)、苯甲醇用量(30 mmol)并以450 rpm严格回流,获得了98.4%的最大最佳苯甲醛产率。为检验模型的可接受性,还进行了包括统计误差函数、方差分析(ANOVA)结果和失拟检验等在内的进一步敏感性研究。所得结果表明,ANFIS模型最适合预测苯甲醛产率,其次是RSM。该反应的绿色化学矩阵计算显示,其E-因子(1.57)、质量强度(MI,2.57)和质量产率(MP,38%)的值较低,这对于绿色和可持续反应来说是非常理想的。因此,利用反胶束法合成的氧化铈-氧化锆催化剂对苯甲醇进行氧化反应,为在温和条件下合成苯甲醛提供了一种绿色且可持续的方法。