Suppr超能文献

将人工神经网络和响应面方法相结合,用于对利用甘蔗生物质对有害甲基橙和结晶紫染料进行解毒的预测建模和机理洞察。

Integrating artificial neural networks and response surface methodology for predictive modeling and mechanistic insights into the detoxification of hazardous MB and CV dyes using Saccharum officinarum L. biomass.

作者信息

Kumari Sheetal, Chowdhry Jyoti, Sharma Pinki, Agarwal Smriti, Chandra Garg Manoj

机构信息

Amity Institute of Environmental Science (AIES), Amity University Uttar Pradesh, Sector-125, Noida, 201313, Gautam Budh Nagar, India.

Maharshi Dayanand University, Rohtak, Haryana, India.

出版信息

Chemosphere. 2023 Dec;344:140262. doi: 10.1016/j.chemosphere.2023.140262. Epub 2023 Oct 2.

Abstract

The presence of dye pollutants in industrial wastewater poses significant environmental and health risks, necessitating effective treatment methods. The optimal adsorption treatment of methylene blue (MB) and crystal violet (CV) dye-simulated wastewater utilising Saccharum officinarum L presents a key challenge in the selection of appropriate modelling approaches. While RSM and ANN models are frequently used, there is a noticeable knowledge gap when it comes to evaluating their relative strengths and weaknesses in this context. The study compared the predictive abilities of response surface methodology (RSM) and artificial neural network (ANN) for the adsorption treatment of MB and CV dye-simulated wastewater using Saccharum officinarum L. The process experimental variables were modelled and predicted using a three-layer artificial neural network trained using the Levenberg-Marquard backpropagation algorithm and 30 central composite designs (CCD). The adsorption study used a specific mechanism, which led to noteworthy maximum removals of 98.3% and 98.2% for dyes (MB and CV), respectively. The RSM model achieved an impressive R of 0.9417, while the ANN model achieved 0.9236 in MB. Adsorption is commonly used to remove colour from many different materials. Saccharum officinarum L., a byproduct of sugarcane processing, has shown potential as an efficient and ecological adsorbent in this environment. The purpose of this study is to evaluate sugarcane bagasse's potential as an adsorbent for the removal of dyes MB and CV from industrial wastewater, providing a long-term strategy for reducing dye pollution. Due to its beneficial economic and environmental characteristics, the Saccharum officinarum L. adsorbent has prompted research into sustainable resources with low pollutant indices.

摘要

工业废水中染料污染物的存在带来了重大的环境和健康风险,因此需要有效的处理方法。利用甘蔗对亚甲基蓝(MB)和结晶紫(CV)染料模拟废水进行最佳吸附处理,是选择合适建模方法时面临的一项关键挑战。虽然响应曲面法(RSM)和人工神经网络(ANN)模型经常被使用,但在评估它们在这种情况下的相对优缺点方面,存在明显的知识空白。本研究比较了响应曲面法(RSM)和人工神经网络(ANN)对利用甘蔗吸附处理MB和CV染料模拟废水的预测能力。使用Levenberg-Marquard反向传播算法训练的三层人工神经网络和30个中心复合设计(CCD)对工艺实验变量进行建模和预测。吸附研究采用了一种特定机制,染料(MB和CV)的最大去除率分别达到了显著的98.3%和98.2%。RSM模型在MB中的R值达到了令人印象深刻的0.9417,而ANN模型为0.9236。吸附通常用于去除许多不同材料中的颜色。甘蔗加工的副产品甘蔗已显示出在这种环境中作为一种高效且生态的吸附剂的潜力。本研究的目的是评估甘蔗渣作为从工业废水中去除染料MB和CV的吸附剂的潜力,为减少染料污染提供长期策略。由于其有益的经济和环境特性,甘蔗吸附剂促使人们对低污染物指数的可持续资源进行研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验