College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China.
China Architecture Design and Research Group, Beijing 100044, China.
Bioresour Technol. 2021 Oct;337:125449. doi: 10.1016/j.biortech.2021.125449. Epub 2021 Jun 23.
This study explored the quantitative mechanisms of heterotrophic nitrification-aerobic denitrification (HN-AD) in a pilot-scale two-stage tidal flow constructed wetland (TFCW). The TFCW packed shale ceramsite (SC) and activated alumina (AA) at each stage, respectively, and aimed to improve decentralized wastewater treatment efficiency. In start-up phases, AA-TFCW accelerated NH-N decline, reaching transformation rates of 6.68 mg NH-N/(L·h). In stable phases, SC-AA-TFCW resisted low-temperatures (<13 °C), achieving stable NH-N and TN removal with effluents ranging 6.36-8.13 mg/L and 9.43-14.7 mg/L, respectively. The dominant genus, Ferribacterium, was the core of HN-AD bacteria, simultaneously removing NH-N and NO-N by nitrate assimilation and complete denitrification (NO-N → N), respectively. The quantitative associations highlighted importance of nitrification, nitrate assimilation, and denitrification in nitrogen removal. HN-AD bacteria (e.g., Lactococcus, Thauera, and Aeromonas) carried high-weight genes in quantitative associations, including napAB, nasA and gltBD, implying that HN-AD bacteria have multiple roles in SC-AA-TFCW operation.
本研究探索了中试规模两段潮汐流人工湿地(TFCW)中异养硝化-好氧反硝化(HN-AD)的定量机制。TFCW 在每个阶段分别填充页岩陶粒(SC)和活性氧化铝(AA),旨在提高分散式污水处理效率。在启动阶段,AA-TFCW 加速了 NH-N 的下降,达到 6.68mg NH-N/(L·h)的转化速率。在稳定阶段,SC-AA-TFCW 能够抵抗低温(<13°C),实现了稳定的 NH-N 和 TN 去除,出水分别为 6.36-8.13mg/L 和 9.43-14.7mg/L。优势属 Ferribacterium 是 HN-AD 细菌的核心,通过硝酸盐同化和完全反硝化(NO-N→N)分别去除 NH-N 和 NO-N。定量关联强调了硝化、硝酸盐同化和反硝化在氮去除中的重要性。HN-AD 细菌(如 Lactococcus、Thauera 和 Aeromonas)在定量关联中携带高权重基因,包括 napAB、nasA 和 gltBD,这意味着 HN-AD 细菌在 SC-AA-TFCW 运行中具有多种作用。