Suppr超能文献

利用激发发射矩阵荧光光谱法和机器学习对环境燃烧源进行源解析

Source Apportionment of Environmental Combustion Sources using Excitation Emission Matrix Fluorescence Spectroscopy and Machine Learning.

作者信息

Rutherford Jay W, Larson Timothy, Gould Timothy, Seto Edmund, Novosselov Igor V, Posner Jonathan D

机构信息

Department of Chemical Engineering, University of Washington, Seattle WA, United States.

Department of Civil and Environmental Engineering, University of Washington, Seattle WA, United States.

出版信息

Atmos Environ (1994). 2021 Aug 15;259. doi: 10.1016/j.atmosenv.2021.118501. Epub 2021 May 31.

Abstract

The link between particulate matter (PM) air pollution and negative health effects is well-established. Air pollution was estimated to cause 4.9 million deaths in 2017 and PM was responsible for 94% of these deaths. In order to inform effective mitigation strategies in the future, further study of PM and its health effects is important. Here, we present a method for identifying sources of combustion generated PM using excitation-emission matrix (EEM) fluorescence spectroscopy and machine learning (ML) algorithms. PM samples were collected during a health effects exposure assessment panel study in Seattle. We use archived field samples from the exposure study and the associated positive matrix factorization (PMF) source apportionment based on X-ray fluorescence and light absorbing carbon measurements to train convolutional neural network and principal component regression algorithms. We show EEM spectra from cyclohexane extracts of the archived filter samples can be used to accurately apportion mobile and vegetative burning sources but were unable to detect crustal dust, Cl-rich, secondary sulfate and fuel oil sources. The use of this EEM-ML approach may be used to conduct PM exposure studies that include source apportionment of combustion sources.

摘要

颗粒物(PM)空气污染与负面健康影响之间的联系已得到充分证实。据估计,2017年空气污染导致490万人死亡,其中94%的死亡由PM造成。为了为未来有效的缓解策略提供依据,进一步研究PM及其对健康的影响很重要。在此,我们提出一种使用激发-发射矩阵(EEM)荧光光谱和机器学习(ML)算法来识别燃烧产生的PM来源的方法。在西雅图的一项健康影响暴露评估小组研究中收集了PM样本。我们使用来自暴露研究的存档现场样本以及基于X射线荧光和光吸收碳测量的相关正矩阵因子分解(PMF)源解析结果来训练卷积神经网络和主成分回归算法。我们表明,存档滤膜样本的环己烷提取物的EEM光谱可用于准确解析移动源和植被燃烧源,但无法检测到地壳尘埃、富含氯的物质、二次硫酸盐和燃料油源。这种EEM-ML方法可用于开展包括燃烧源解析在内的PM暴露研究。

相似文献

1
Source Apportionment of Environmental Combustion Sources using Excitation Emission Matrix Fluorescence Spectroscopy and Machine Learning.
Atmos Environ (1994). 2021 Aug 15;259. doi: 10.1016/j.atmosenv.2021.118501. Epub 2021 May 31.
2
Excitation Emission Matrix Fluorescence Spectroscopy for Combustion Generated Particulate Matter Source Identification.
Atmos Environ (1994). 2020 Jan 1;220. doi: 10.1016/j.atmosenv.2019.117065. Epub 2019 Oct 22.
3
Sources of particulate matter in China: Insights from source apportionment studies published in 1987-2017.
Environ Int. 2018 Jun;115:343-357. doi: 10.1016/j.envint.2018.03.037. Epub 2018 Apr 10.
6
Ambient particulate matter source apportionment using receptor modelling in European and Central Asia urban areas.
Environ Pollut. 2020 Nov;266(Pt 3):115199. doi: 10.1016/j.envpol.2020.115199. Epub 2020 Jul 15.
7
Source apportionment of indoor, outdoor, and personal PM2.5 in Seattle, Washington, using positive matrix factorization.
J Air Waste Manag Assoc. 2004 Sep;54(9):1175-87. doi: 10.1080/10473289.2004.10470976.
8
PM2.5 source apportionment with organic markers in the Southeastern Aerosol Research and Characterization (SEARCH) study.
J Air Waste Manag Assoc. 2015 Sep;65(9):1104-18. doi: 10.1080/10962247.2015.1063551.
9
Particulate matter chemical component concentrations and sources in settings of household solid fuel use.
Indoor Air. 2017 Nov;27(6):1052-1066. doi: 10.1111/ina.12389. Epub 2017 May 8.

本文引用的文献

1
Text Data Augmentation for Deep Learning.
J Big Data. 2021;8(1):101. doi: 10.1186/s40537-021-00492-0. Epub 2021 Jul 19.
2
Excitation-Emission Matrix Spectroscopy for Analysis of Chemical Composition of Combustion Generated Particulate Matter.
Environ Sci Technol. 2020 Jul 7;54(13):8198-8209. doi: 10.1021/acs.est.0c01110. Epub 2020 Jun 12.
3
Excitation Emission Matrix Fluorescence Spectroscopy for Combustion Generated Particulate Matter Source Identification.
Atmos Environ (1994). 2020 Jan 1;220. doi: 10.1016/j.atmosenv.2019.117065. Epub 2019 Oct 22.
4
A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution from Five Emission Sources.
Int J Environ Res Public Health. 2018 Jun 8;15(6):1206. doi: 10.3390/ijerph15061206.
7
"What We Breathe Impacts Our Health: Improving Understanding of the Link between Air Pollution and Health".
Environ Sci Technol. 2016 May 17;50(10):4895-904. doi: 10.1021/acs.est.5b03827. Epub 2016 May 5.
8
Review of receptor modeling methods for source apportionment.
J Air Waste Manag Assoc. 2016 Mar;66(3):237-59. doi: 10.1080/10962247.2016.1140693.
9
Particulate matter components, sources, and health: Systematic approaches to testing effects.
J Air Waste Manag Assoc. 2015 May;65(5):544-58. doi: 10.1080/10962247.2014.1001884.
10
Particle transport and deposition: basic physics of particle kinetics.
Compr Physiol. 2013 Oct;3(4):1437-71. doi: 10.1002/cphy.c100085.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验