Suppr超能文献

确定计算机解读心电图结论的临床意义。

Determining the clinical significance of computer interpreted electrocardiography conclusions.

作者信息

Kersten Daniel J, D'Angelo Kyla, Vargas Juana, Verma Gagan, Malik Uzma, Shavolian Schlomo, Zeltser Roman, Hai Ofek, Makaryus Amgad N

机构信息

Department of Cardiology, Nassau University Medical Center East Meadow, NY, USA.

New York Institute of Technology College of Osteopathic Medicine Old Westbury, NY, USA.

出版信息

Am J Cardiovasc Dis. 2021 Jun 15;11(3):375-381. eCollection 2021.

Abstract

BACKGROUND

Computerized electrocardiogram (EKG) interpretation technology was developed in the mid-20th century, but its use continues to be controversial. This study aims to determine clinical factors which indicate greater odds of clinical significance of an abnormal computerized EKG interpretation.

METHODS

The inclusion criteria for this retrospective study were patients who underwent outpatient echocardiography for the indication of an abnormal EKG and had an EKG abnormality diagnosed by the computerized EKG system. Qualifying patients had the results of their computerized EKG, echocardiogram, and charted patient characteristics collected. Computerized diagnoses and patient characteristics were assessed to determine if they were associated with increasing or decreasing the odds of an echocardiographic abnormality via logistic regression. Chi-square and t-test analyses were used for categorical and continuous variables, respectively. Odds ratios are presented as odds ratio [95% confidence interval]. A -value of ≤ 0.05 was considered statistically significant.

RESULTS

A total of 515 patients were included in this study. The population was 59% women with an average age of 57 ± 16 years, and a mean BMI of 30.1 ± 7.3 kg/m. Patients with echocardiographic abnormalities tended to have more cardiac risk factors than patients without abnormalities. In our final odds ratio model consisting of both patient characteristics and EKG diagnoses, age, coronary disease (CAD), and diabetes mellitus (DM) increased the odds of an echocardiographic abnormality (1.04 [1.02-1.06], 2.68 [1.41-5.09], and 1.75 [1.01-3.04], respectively). That model noted low QRS voltage decreased the odds of an abnormal echocardiogram (0.31 [0.10-0.91]).

CONCLUSION

Our findings suggest that in patients with an abnormal computerized EKG reading, the specific factors of older age, CAD, and DM are associated with higher odds of abnormalities on follow-up echocardiography. These results, plus practitioner overreading, can be used to determine more appropriate management when faced with an abnormal computerized EKG diagnosis.

摘要

背景

计算机化心电图(EKG)解读技术于20世纪中叶开发,但它的使用仍存在争议。本研究旨在确定表明计算机化EKG异常解读具有更大临床意义可能性的临床因素。

方法

这项回顾性研究的纳入标准是因EKG异常而接受门诊超声心动图检查且计算机化EKG系统诊断为EKG异常的患者。符合条件的患者收集了其计算机化EKG、超声心动图结果以及记录的患者特征。通过逻辑回归评估计算机化诊断和患者特征,以确定它们是否与超声心动图异常可能性的增加或降低相关。卡方检验和t检验分析分别用于分类变量和连续变量。比值比以比值比[95%置信区间]表示。P值≤0.05被认为具有统计学意义。

结果

本研究共纳入515例患者。该人群中女性占59%,平均年龄为57±16岁,平均体重指数为30.1±7.3kg/m²。与无异常的患者相比,有超声心动图异常的患者往往有更多的心脏危险因素。在我们最终的由患者特征和EKG诊断组成的比值比模型中,年龄、冠心病(CAD)和糖尿病(DM)增加了超声心动图异常的可能性(分别为1.04[1.02 - 1.06]、2.68[1.41 - 5.09]和1.75[1.01 - 3.04])。该模型指出低QRS电压降低了超声心动图异常的可能性(0.31[0.10 - 0.91])。

结论

我们的研究结果表明,在计算机化EKG读数异常的患者中,年龄较大、CAD和DM这些特定因素与后续超声心动图异常的可能性较高相关。这些结果,加上医生的复查,可以用于在面对计算机化EKG异常诊断时确定更合适的管理措施。

相似文献

1
Determining the clinical significance of computer interpreted electrocardiography conclusions.
Am J Cardiovasc Dis. 2021 Jun 15;11(3):375-381. eCollection 2021.
2
Significance of electrocardiogram abnormalities in children presenting to the emergency department with acute COVID-19 infection.
Am J Emerg Med. 2023 Sep;71:195-199. doi: 10.1016/j.ajem.2023.06.041. Epub 2023 Jun 28.
4
Electrocardiogram changes as predictors for new imaging findings in repeat transthoracic echocardiography.
Future Cardiol. 2023 Aug;19(10):487-495. doi: 10.2217/fca-2023-0045. Epub 2023 Sep 18.
6
[Prevalence and incidence of electrocardiographic abnormalities in healthy population older than 49].
Semergen. 2024 Nov-Dec;50(8):102318. doi: 10.1016/j.semerg.2024.102318. Epub 2024 Sep 11.
9
Impact of telemedicine on the practice of pediatric cardiology in community hospitals.
Pediatrics. 2002 Jan;109(1):E3. doi: 10.1542/peds.109.1.e3.
10
Prognostic implications of exercise echocardiography in women with known or suspected coronary artery disease.
J Am Coll Cardiol. 1997 Aug;30(2):414-20. doi: 10.1016/s0735-1097(97)00167-8.

本文引用的文献

1
Erroneous computer-based interpretations of atrial fibrillation and atrial flutter in a Swedish primary health care setting.
Scand J Prim Health Care. 2019 Dec;37(4):426-433. doi: 10.1080/02813432.2019.1684429. Epub 2019 Nov 4.
2
Do Medical Practitioners Trust Automated Interpretation of Electrocardiograms?
Stud Health Technol Inform. 2019 Aug 21;264:536-540. doi: 10.3233/SHTI190280.
3
Heart valve disease in elderly.
World J Cardiol. 2019 Feb 26;11(2):71-83. doi: 10.4330/wjc.v11.i2.71.
4
The Computerized ECG: Friend and Foe.
Am J Med. 2019 Feb;132(2):153-160. doi: 10.1016/j.amjmed.2018.08.025. Epub 2018 Sep 8.
5
Comparison of automated interval measurements by widely used algorithms in digital electrocardiographs.
Am Heart J. 2018 Jun;200:1-10. doi: 10.1016/j.ahj.2018.02.014. Epub 2018 Feb 26.
6
Computer-Interpreted Electrocardiograms: Benefits and Limitations.
J Am Coll Cardiol. 2017 Aug 29;70(9):1183-1192. doi: 10.1016/j.jacc.2017.07.723.
7
Improving ECG Competence in Medical Trainees in a UK District General Hospital.
Cardiol Res. 2014 Apr;5(2):51-57. doi: 10.14740/cr333e. Epub 2014 May 15.
8
The computerized interpretation of the electrocardiogram: A double-edged sword?
Enferm Clin. 2017 Mar-Apr;27(2):136-137. doi: 10.1016/j.enfcli.2016.10.001. Epub 2016 Nov 11.
9
Update on Echocardiographic Assessment in Diabetes Mellitus.
Curr Cardiol Rep. 2016 Sep;18(9):85. doi: 10.1007/s11886-016-0759-0.
10
Electrocardiogram interpretation and arrhythmia management: a primary and secondary care survey.
Br J Gen Pract. 2016 May;66(646):e291-6. doi: 10.3399/bjgp16X684781. Epub 2016 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验