Suppr超能文献

自动化对话代理用于干预后随访:系统评价。

Automated conversational agents for post-intervention follow-up: a systematic review.

机构信息

Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, London, UK.

Department of Cardiothoracic Surgery, King's College Hospital, London, UK.

出版信息

BJS Open. 2021 Jul 6;5(4). doi: 10.1093/bjsopen/zrab070.

Abstract

BACKGROUND

Advances in natural language processing and other machine learning techniques have led to the development of automated agents (chatbots) that mimic human conversation. These systems have mainly been used in commercial settings, and within medicine, for symptom checking and psychotherapy. The aim of this systematic review was to determine the acceptability and implementation success of chatbots in the follow-up of patients who have undergone a physical healthcare intervention.

METHODS

A systematic review of MEDLINE, MEDLINE In-process, EMBASE, PsychINFO, CINAHL, CENTRAL and the grey literature using a PRISMA-compliant methodology up to September 2020 was conducted. Abstract screening and data extraction were performed in duplicate. Risk of bias and quality assessments were performed for each study.

RESULTS

The search identified 904 studies of which 10 met full inclusion criteria: three randomised control trials, one non-randomised clinical trial and six cohort studies. Chatbots were used for monitoring after the management of cancer, hypertension and asthma, orthopaedic intervention, ureteroscopy and intervention for varicose veins. All chatbots were deployed on mobile devices. A number of metrics were identified and ranged from a 31 per cent chatbot engagement rate to a 97 per cent response rate for system-generated questions. No study examined patient safety.

CONCLUSION

A range of chatbot builds and uses was identified. Further investigation of acceptability, efficacy and mechanistic evaluation in outpatient care pathways may lend support to implementation in routine clinical care.

摘要

背景

自然语言处理和其他机器学习技术的进步催生了模仿人类对话的自动化代理(聊天机器人)。这些系统主要用于商业领域,在医学领域,用于症状检查和心理治疗。本系统评价的目的是确定在接受过身体保健干预的患者随访中使用聊天机器人的可接受性和实施成功情况。

方法

我们使用符合 PRISMA 原则的方法对 MEDLINE、MEDLINE 正在处理、EMBASE、PsychINFO、CINAHL、CENTRAL 和灰色文献进行了系统评价,截至 2020 年 9 月。对每个研究的摘要和数据进行了重复筛选和提取。对每项研究进行了偏倚风险和质量评估。

结果

搜索共确定了 904 项研究,其中 10 项符合全部纳入标准:3 项随机对照试验、1 项非随机临床试验和 6 项队列研究。聊天机器人用于监测癌症、高血压和哮喘、骨科干预、输尿管镜检查和静脉曲张干预后的管理情况。所有的聊天机器人都部署在移动设备上。确定了一系列指标,从 31%的聊天机器人参与率到系统生成问题的 97%响应率不等。没有研究检查患者安全性。

结论

确定了一系列聊天机器人的构建和使用。进一步调查门诊护理路径中的可接受性、疗效和机制评估,可能有助于在常规临床护理中实施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ea0/8320342/03bbf956d9b6/zrab070f2.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验