Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands.
DPI, P.O.Box 92, 5600 AX Eindhoven, The Netherlands.
J Am Chem Soc. 2021 Aug 11;143(31):12053-12062. doi: 10.1021/jacs.1c03630. Epub 2021 Jul 29.
The organic components in metal-organic frameworks (MOFs) are unique: they are embedded in a crystalline lattice, yet, as they are separated from each other by tunable free space, a large variety of dynamic behavior can emerge. These rotational dynamics of the organic linkers are especially important due to their influence over properties such as gas adsorption and kinetics of guest release. To fully exploit linker rotation, such as in the form of molecular machines, it is necessary to engineer correlated linker dynamics to achieve their cooperative functional motion. Here, we show that for MIL-53, a topology with closely spaced rotors, the phenylene functionalization allows researchers to tune the rotors' steric environment, shifting linker rotation from completely static to rapid motions at frequencies above 100 MHz. For steric interactions that start to inhibit independent rotor motion, we identify for the first time the emergence of coupled rotation modes in linker dynamics. These findings pave the way for function-specific engineering of gear-like cooperative motion in MOFs.
金属-有机框架(MOFs)中的有机成分是独特的:它们嵌入在晶体格子中,但由于它们彼此之间被可调谐的自由空间隔开,因此可以出现多种动态行为。这些有机连接体的旋转动力学尤其重要,因为它们会影响气体吸附和客体释放动力学等性质。为了充分利用连接体的旋转,例如在分子机器的形式中,有必要对相关的连接体动力学进行工程设计,以实现它们的协同功能运动。在这里,我们表明,对于 MIL-53 来说,对于具有紧密间隔转子的拓扑结构,苯环官能化允许研究人员调整转子的空间环境,将连接体旋转从完全静态转变为在高于 100MHz 的频率下的快速运动。对于开始抑制独立转子运动的空间相互作用,我们首次确定了连接体动力学中耦合旋转模式的出现。这些发现为 MOFs 中特定于功能的齿轮状协同运动的工程设计铺平了道路。