Madero José I, Manotas María C, García-Acero Mary, López Cáceres Andrea, López Jaimes Claudia
EUGIN Clinic, Bogotá, Colombia -
EUGIN Clinic, Bogotá, Colombia.
Minerva Obstet Gynecol. 2023 Jun;75(3):260-272. doi: 10.23736/S2724-606X.21.04805-3. Epub 2021 Jul 30.
In the last years technologies have been developed that allow obtaining genetic information in less time and at lower cost, revolutionizing the genetic diagnosis in reproductive medicine, with availability of genetic tests from conception. High throughput sequencing analyses have increased the ability to detect embryos with genetic diseases, which has contributed to the better selection of embryos for in-vitro fertilization and, therefore, better reproductive outcomes. The preimplantation genetic testing (PGT) includes three subcategories of PGT for aneuploidies (PGT-A), PGT for single gene/monogenic disorders (PGT-M), and PGT for chromosome structural rearrangements (PGT-SR). This review provides an overview of the evolution of preimplantation genetic testing, the advantages and disadvantages of these technologies and their applicability in reproductive medicine as well as a description of the legislation and bioethics aspects. Advances in preimplantation genetic testing are changing clinical practice, posing new challenges for genetic counseling and alternative plausible to substantially reduce the risk of an adverse reproductive outcome related to the transfer of abnormal embryos. Despite the overall important implantation rates achieved following transfer of euploid embryos, PGT-A did not improve overall pregnancy outcomes in all women. There is a definite need for studies to identify the causes of why not all euploid embryos implant. Also, debate continues regarding the accuracy and the safety of this approach, and the currently available evidence is insufficient to support PGT-A in routine clinical practice. The general recommendation is that PGT-A, PGT-M and PGT-SR should be guided according to the antecedents of the couples.
在过去几年中,已经开发出了一些技术,这些技术能够在更短的时间内、以更低的成本获取基因信息,从而彻底改变了生殖医学中的基因诊断,使得从受孕开始就能够进行基因检测。高通量测序分析提高了检测患有遗传疾病胚胎的能力,这有助于更好地选择用于体外受精的胚胎,进而带来更好的生殖结果。植入前基因检测(PGT)包括用于非整倍体的PGT(PGT-A)、用于单基因/单基因疾病的PGT(PGT-M)以及用于染色体结构重排的PGT(PGT-SR)三个子类别。本综述概述了植入前基因检测的发展历程、这些技术的优缺点及其在生殖医学中的适用性,同时还描述了立法和生物伦理方面的情况。植入前基因检测的进展正在改变临床实践,给遗传咨询带来了新的挑战,同时也为大幅降低与异常胚胎移植相关的不良生殖结果风险提供了其他可行的方法。尽管移植整倍体胚胎后总体着床率较高,但PGT-A并未改善所有女性的总体妊娠结局。显然需要开展研究来确定并非所有整倍体胚胎都能着床的原因。此外,关于这种方法的准确性和安全性的争论仍在继续,目前可得的证据不足以支持在常规临床实践中使用PGT-A。一般建议是,PGT-A、PGT-M和PGT-SR应根据夫妻双方的情况来指导实施。