Suppr超能文献

交叉滞后与生活史和人口统计参数的无偏估计。

Cross-lags and the unbiased estimation of life-history and demographic parameters.

机构信息

Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands.

Department of Animal Ecology & Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands.

出版信息

J Anim Ecol. 2021 Oct;90(10):2234-2253. doi: 10.1111/1365-2656.13572. Epub 2021 Aug 18.

Abstract

Biological processes exhibit complex temporal dependencies due to the sequential nature of allocation decisions in organisms' life cycles, feedback loops and two-way causality. Consequently, longitudinal data often contain cross-lags: the predictor variable depends on the response variable of the previous time step. Although statisticians have warned that regression models that ignore such covariate endogeneity in time series are likely to be inappropriate, this has received relatively little attention in biology. Furthermore, the resulting degree of estimation bias remains largely unexplored. We use a graphical model and numerical simulations to understand why and how regression models that ignore cross-lags can be biased, and how this bias depends on the length and number of time series. Ecological and evolutionary examples are provided to illustrate that cross-lags may be more common than is typically appreciated and that they occur in functionally different ways. We show that routinely used regression models that ignore cross-lags are asymptotically unbiased. However, this offers little relief, as for most realistically feasible lengths of time-series conventional methods are biased. Furthermore, collecting time series on multiple subjects-such as populations, groups or individuals-does not help to overcome this bias when the analysis focusses on within-subject patterns (often the pattern of interest). Simulations, a literature search and a real-world empirical example together suggest that approaches that ignore cross-lags are likely biased in the direction opposite to the sign of the cross-lag (e.g. towards detecting density dependence of vital rates and against detecting life-history trade-offs and benefits of group living). Next, we show that multivariate (e.g. structural equation) models can dynamically account for cross-lags, and simultaneously address additional bias induced by measurement error, but only if the analysis considers multiple time series. We provide guidance on how to identify a cross-lag and subsequently specify it in a multivariate model, which can be far from trivial. Our tutorials with data and R code of the worked examples provide step-by-step instructions on how to perform such analyses. Our study offers insights into situations in which cross-lags can bias analysis of ecological and evolutionary time series and suggests that adopting dynamical models can be important, as this directly affects our understanding of population regulation, the evolution of life histories and cooperation, and possibly many other topics. Determining how strong estimation bias due to ignoring covariate endogeneity has been in the ecological literature requires further study, also because it may interact with other sources of bias.

摘要

生物过程表现出复杂的时间依赖性,这是由于生物体生命周期中分配决策的顺序性质、反馈回路和双向因果关系。因此,纵向数据通常包含交叉滞后:预测变量取决于前一个时间步的响应变量。尽管统计学家警告说,忽略时间序列中这种协变量内生性的回归模型可能不合适,但这在生物学中得到的关注相对较少。此外,由此产生的估计偏差程度在很大程度上仍未得到探索。我们使用图形模型和数值模拟来理解为什么以及忽略交叉滞后的回归模型可能会产生偏差,以及这种偏差如何取决于时间序列的长度和数量。提供了生态学和进化学的例子来说明交叉滞后可能比通常认为的更为常见,并且它们以不同的功能方式发生。我们表明,通常使用的忽略交叉滞后的回归模型是渐近无偏的。然而,这并没有什么帮助,因为对于大多数实际可行的时间序列长度,传统方法存在偏差。此外,当分析侧重于个体内模式(通常是感兴趣的模式)时,在多个主体(如群体、组或个体)上收集时间序列并不能帮助克服这种偏差。模拟、文献搜索和一个真实世界的实证例子一起表明,忽略交叉滞后的方法可能会产生与交叉滞后符号相反的偏差(例如,倾向于检测重要率的密度依赖性,而不是检测生活史权衡和群体生活的益处)。接下来,我们表明,多元(例如结构方程)模型可以动态地解释交叉滞后,并同时解决由测量误差引起的额外偏差,但前提是分析考虑多个时间序列。我们提供了如何识别交叉滞后并随后在多元模型中指定它的指导,这可能远非微不足道。我们的教程提供了带有数据和 R 代码的示例,逐步介绍了如何执行此类分析。我们的研究提供了关于交叉滞后如何会使生态和进化时间序列的分析产生偏差的见解,并表明采用动态模型可能很重要,因为这直接影响我们对种群调节、生命史进化和合作的理解,以及可能还有许多其他主题。确定在生态学文献中忽略协变量内生性引起的估计偏差有多强,需要进一步研究,这也是因为它可能与其他来源的偏差相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed9/9290935/3e320b662425/JANE-90-2234-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验