615 McCallie Ave, Civil and Chemical Engineering, University of Tennessee at Chattanooga, TN 37403, United States.
W256K Olmsted Building, School of Science Engineering and Technology, Penn State Harrisburg University, PA 17057, United States.
Sci Total Environ. 2021 Nov 1;793:148560. doi: 10.1016/j.scitotenv.2021.148560. Epub 2021 Jun 22.
The increasing use of engineered nanoparticles (ENPs) in consumer products has led to their increased presence in natural water systems. Here, we present a critical overview of the studies that analyzed the fate and transport behavior of ENPs using real environmental samples. We focused on cerium dioxide, titanium dioxide, silver, carbon nanotubes, and zinc oxide, the widely used ENPs in consumer products. Under field scale settings, the transformation rates of ENPs and subsequently their physicochemical properties (e.g., toxicity and bioavailability) are primarily influenced by the modes of interactions among ENPs and natural organic matter. Other typical parameters include factors related to water chemistry, hydrodynamics, and surface and electronic properties of ENPs. Overall, future nanomanufacturing processes should fully consider the health, safety, and environmental impacts without compromising the functionality of consumer products.
越来越多的工程纳米粒子(ENPs)被应用于消费产品,导致它们在自然水系中出现的频率增加。在这里,我们对利用真实环境样本分析 ENPs 命运和迁移行为的研究进行了批判性综述。我们重点关注了在消费产品中广泛使用的二氧化铈、二氧化钛、银、碳纳米管和氧化锌这几种 ENPs。在野外规模设置下,ENPs 的转化速率及其随后的物理化学性质(例如毒性和生物可利用性)主要受 ENPs 与天然有机物之间相互作用模式的影响。其他典型参数包括与水化学、水动力和 ENPs 的表面和电子特性相关的因素。总体而言,未来的纳米制造工艺在不影响消费产品功能的前提下,应充分考虑健康、安全和环境影响。