Suppr超能文献

环境水悬浮条件下单个及共存金属纳米颗粒的分散与聚集命运

Dispersion and Aggregation Fate of Individual and Co-Existing Metal Nanoparticles under Environmental Aqueous Suspension Conditions.

作者信息

Bathi Jejal Reddy, Roy Shuvashish, Tareq Syed, Potts Gretchen E, Palchoudhury Soubantika, Sweck Samantha O, Gadhamshetty Venkataramana

机构信息

Civil and Chemical Engineering, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA.

Chemistry and Physics, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA.

出版信息

Materials (Basel). 2022 Sep 28;15(19):6733. doi: 10.3390/ma15196733.

Abstract

The use of diverse metal nanoparticles (MNPs) in a wide range of commercial products has led to their co-existence in the aqueous environment. The current study explores the dispersion and aggregation fate of five prominent MNPs (silver, copper, iron, nickel, and titanium), in both their individual and co-existing forms. We address a knowledge gap regarding their environmental fate under turbulent condition akin to flowing rivers. We present tandem analytical techniques based on dynamic light scattering, ultraviolet-visible spectroscopy, and inductively coupled plasma atomic emission spectroscopy for discerning their dispersion behavior under residence times of turbulence, ranging from 0.25 to 4 h. The MNPs displayed a multimodal trend for dispersion and aggregation behavior with suspension time in aqueous samples. The extent of dispersion was variable and depended upon intrinsic properties of MNPs. However, the co-existing MNPs displayed a dominant hetero-aggregation effect, independent of the residence times. Further research with use of real-world environmental samples can provide additional insights on the effects of sample chemistry on MNPs fate.

摘要

多种金属纳米颗粒(MNPs)在广泛的商业产品中的使用导致它们在水环境中共存。当前的研究探索了五种主要的金属纳米颗粒(银、铜、铁、镍和钛)以单独形式和共存形式存在时的分散和聚集情况。我们解决了一个关于它们在类似于河流流动的湍流条件下的环境归宿的知识空白。我们提出了基于动态光散射、紫外可见光谱和电感耦合等离子体原子发射光谱的串联分析技术,以辨别它们在0.25至4小时的湍流停留时间下的分散行为。金属纳米颗粒在水性样品中的分散和聚集行为随悬浮时间呈现出多峰趋势。分散程度是可变的,并且取决于金属纳米颗粒的固有特性。然而,共存的金属纳米颗粒表现出主要的异质聚集效应,与停留时间无关。使用实际环境样品的进一步研究可以提供关于样品化学对金属纳米颗粒归宿影响的更多见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/931d/9572943/6109f2b18504/materials-15-06733-g001.jpg

相似文献

2
Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: A review.
J Hazard Mater. 2017 Jan 15;322(Pt A):29-47. doi: 10.1016/j.jhazmat.2016.02.068. Epub 2016 Mar 2.
3
Effects of monovalent and divalent metal cations on the aggregation and suspension of FeO magnetic nanoparticles in aqueous solution.
Sci Total Environ. 2017 May 15;586:817-826. doi: 10.1016/j.scitotenv.2017.02.060. Epub 2017 Feb 12.
6
Characterization of volcanic ash nanoparticles and study of their fate in aqueous medium by asymmetric flow field-flow fractionation-multi-detection.
Environ Sci Pollut Res Int. 2021 Jun;28(24):31850-31860. doi: 10.1007/s11356-021-12891-0. Epub 2021 Feb 22.
8
Aqueous aggregation behavior of citric acid coated magnetite nanoparticles: Effects of pH, cations, anions, and humic acid.
Environ Res. 2018 Feb;161:49-60. doi: 10.1016/j.envres.2017.10.045. Epub 2017 Nov 2.
9
The fate of iron nanoparticles in environmental waters treated with nanoscale zero-valent iron, FeONPs and Fe3O4NPs.
Water Res. 2016 May 1;94:315-327. doi: 10.1016/j.watres.2016.03.004. Epub 2016 Mar 2.
10
Aggregation of titanium dioxide nanoparticles: role of a fulvic acid.
Environ Sci Technol. 2009 Mar 1;43(5):1282-6. doi: 10.1021/es8023594.

本文引用的文献

3
Behavior of engineered nanoparticles in aquatic environmental samples: Current status and challenges.
Sci Total Environ. 2021 Nov 1;793:148560. doi: 10.1016/j.scitotenv.2021.148560. Epub 2021 Jun 22.
4
Detection and quantification of engineered particles in urban runoff.
Chemosphere. 2020 Jun;248:126070. doi: 10.1016/j.chemosphere.2020.126070. Epub 2020 Feb 1.
5
Sewage spills are a major source of titanium dioxide engineered (nano)-particles into the environment.
Environ Sci Nano. 2019 Mar 1;6(3):763-777. doi: 10.1039/C8EN01376D. Epub 2019 Jan 28.
6
Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects.
Clin Biochem Rev. 2019 Aug;40(3):115-133. doi: 10.33176/AACB-19-00024.
7
Identification and quantification of titanium nanoparticles in surface water: A case study in Lake Taihu, China.
J Hazard Mater. 2020 Jan 15;382:121045. doi: 10.1016/j.jhazmat.2019.121045. Epub 2019 Aug 20.
8
A seasonal observation on the distribution of engineered nanoparticles in municipal wastewater treatment systems exemplified by TiO and ZnO.
Sci Total Environ. 2018 Jun 1;625:1321-1329. doi: 10.1016/j.scitotenv.2017.12.326. Epub 2018 Jan 12.
9
Detection of nanoparticles in Dutch surface waters.
Sci Total Environ. 2018 Apr 15;621:210-218. doi: 10.1016/j.scitotenv.2017.11.238. Epub 2017 Nov 24.
10
Stability of co-existing ZnO and TiO nanomaterials in natural water: Aggregation and sedimentation mechanisms.
Chemosphere. 2017 Oct;184:1125-1133. doi: 10.1016/j.chemosphere.2017.06.097. Epub 2017 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验