Vanderbilt Microbiome Initiative, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA.
Guangdong Eco-Engineering Polytechnic, Guangzhou 510520, China.
J Hazard Mater. 2021 Sep 15;418:126384. doi: 10.1016/j.jhazmat.2021.126384. Epub 2021 Jun 10.
Even though microbial communities can be more effective at degrading xenobiotics than cultured micro-organisms, yet little is known about the microbial strategies that underpin xenobiotic biodegradation by microbial communities. Here, we employ metagenomic community sequencing to explore the mechanisms that drive the development of 49 xenobiotic-degrading microbial communities, which were enriched from 7 contaminated soils or sediments with a range of xenobiotic compounds. We show that multiple microbial strategies likely drive the development of xenobiotic degrading communities, notably (i) presence of genes encoding catabolic enzymes to degrade xenobiotics; (ii) presence of genes encoding efflux pumps; (iii) auxiliary catabolic genes on plasmids; and (iv) positive interactions dominate microbial communities with efficient degradation. Overall, the integrated analyses of microbial ecological strategies advance our understanding of microbial processes driving the biodegradation of xenobiotics and promote the design of bioremediation systems.
尽管微生物群落比培养的微生物更能有效地降解外来化合物,但人们对微生物群落降解外来化合物的微生物策略知之甚少。在这里,我们采用宏基因组群落测序来探索驱动 49 个外来化合物降解微生物群落发展的机制,这些群落是从 7 个受多种外来化合物污染的土壤或沉积物中富集得到的。我们表明,多种微生物策略可能驱动外来化合物降解群落的发展,特别是:(i) 存在编码降解外来化合物的代谢酶的基因;(ii) 存在编码外排泵的基因;(iii) 质粒上的辅助代谢基因;(iv) 具有高效降解能力的微生物群落中存在正相互作用。总的来说,对微生物生态策略的综合分析增进了我们对外来化合物生物降解过程中微生物作用的理解,并促进了生物修复系统的设计。