Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
Departamento de Electrónica, Universidad Técnica Federico Santa María, Valparaíso, Chile.
PLoS One. 2021 Jul 30;16(7):e0251647. doi: 10.1371/journal.pone.0251647. eCollection 2021.
We propose a novel, scalable, and accurate method for detecting neuronal ensembles from a population of spiking neurons. Our approach offers a simple yet powerful tool to study ensemble activity. It relies on clustering synchronous population activity (population vectors), allows the participation of neurons in different ensembles, has few parameters to tune and is computationally efficient. To validate the performance and generality of our method, we generated synthetic data, where we found that our method accurately detects neuronal ensembles for a wide range of simulation parameters. We found that our method outperforms current alternative methodologies. We used spike trains of retinal ganglion cells obtained from multi-electrode array recordings under a simple ON-OFF light stimulus to test our method. We found a consistent stimuli-evoked ensemble activity intermingled with spontaneously active ensembles and irregular activity. Our results suggest that the early visual system activity could be organized in distinguishable functional ensembles. We provide a Graphic User Interface, which facilitates the use of our method by the scientific community.
我们提出了一种新颖、可扩展且精确的方法,用于从一群放电神经元中检测神经元集合。我们的方法提供了一种简单而强大的工具来研究集合活动。它依赖于聚类同步的群体活动(群体向量),允许神经元参与不同的集合,参数较少,计算效率高。为了验证我们方法的性能和通用性,我们生成了合成数据,在广泛的模拟参数范围内,发现我们的方法可以准确地检测神经元集合。我们发现我们的方法优于当前的替代方法。我们使用多电极阵列记录在简单的 ON-OFF 光刺激下获得的视网膜神经节细胞的尖峰序列来测试我们的方法。我们发现了一致的刺激诱发的集合活动与自发活动的集合和不规则活动交织在一起。我们的结果表明,早期视觉系统的活动可以组织成可区分的功能集合。我们提供了一个图形用户界面,方便科学界使用我们的方法。