Suppr超能文献

通过局部转移熵对多重脑网络进行建模。

Modelling a multiplex brain network by local transfer entropy.

作者信息

Parente Fabrizio, Colosimo Alfredo

机构信息

Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza, University of Rome, Via Borelli, 50 00100, Rome, Italy.

出版信息

Sci Rep. 2021 Jul 30;11(1):15525. doi: 10.1038/s41598-021-93190-z.

Abstract

This paper deals with the information transfer mechanisms underlying causal relations between brain regions under resting condition. fMRI images of a large set of healthy individuals from the 1000 Functional Connectomes Beijing Zang dataset have been considered and the causal information transfer among brain regions studied using Transfer Entropy concepts. Thus, we explored the influence of a set of states in two given regions at time t (A B.) over the state of one of them at a following time step (B) and could observe a series of time-dependent events corresponding to four kinds of interactions, or causal rules, pointing to (de)activation and turn off mechanisms and sharing some features with positive and negative functional connectivity. The functional architecture emerging from such rules was modelled by a directional multilayer network based upon four interaction matrices and a set of indexes describing the effects of the network structure in several dynamical processes. The statistical significance of the models produced by our approach was checked within the used database of homogeneous subjects and predicts a successful extension, in due course, to detect differences among clinical conditions and cognitive states.

摘要

本文探讨了静息状态下大脑区域间因果关系背后的信息传递机制。我们考虑了来自“北京藏象1000功能连接组”数据集的大量健康个体的功能磁共振成像(fMRI)图像,并使用转移熵概念研究了大脑区域间的因果信息传递。因此,我们探究了在时刻t两个给定区域(A、B)的一组状态对其中一个区域在后续时间步(B)的状态的影响,并能够观察到一系列与四种相互作用或因果规则相对应的随时间变化的事件,这些规则指向(去)激活和关闭机制,并且与正负功能连接共享一些特征。由这些规则产生的功能架构通过一个基于四个相互作用矩阵和一组描述网络结构在几个动态过程中作用的指标的定向多层网络进行建模。我们方法所产生模型的统计显著性在所用的同质受试者数据库中进行了检验,并预测在适当的时候能够成功扩展,以检测临床状况和认知状态之间的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70f6/8324877/06314901f1ad/41598_2021_93190_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验