Suppr超能文献

恢复突触处谷氨酸受体位动态可挽救 Shank3 缺陷型小鼠的自闭症样缺陷。

Restoring glutamate receptosome dynamics at synapses rescues autism-like deficits in Shank3-deficient mice.

机构信息

IGF, University of Montpellier, CNRS, INSERM, Montpellier, France.

Cnr Neuroscience Institute, 3220129, Milan, Italy.

出版信息

Mol Psychiatry. 2021 Dec;26(12):7596-7609. doi: 10.1038/s41380-021-01230-x. Epub 2021 Jul 30.

Abstract

Shank3 monogenic mutations lead to autism spectrum disorders (ASD). Shank3 is part of the glutamate receptosome that physically links ionotropic NMDA receptors to metabotropic mGlu5 receptors through interactions with scaffolding proteins PSD95-GKAP-Shank3-Homer. A main physiological function of the glutamate receptosome is to control NMDA synaptic function that is required for plasticity induction. Intact glutamate receptosome supports glutamate receptors activation and plasticity induction, while glutamate receptosome disruption blocks receptors activity, preventing the induction of subsequent plasticity. Despite possible impact on metaplasticity and cognitive behaviors, scaffold interaction dynamics and their consequences are poorly defined. Here, we used mGlu5-Homer interaction as a biosensor of glutamate receptosome integrity to report changes in synapse availability for plasticity induction. Combining BRET imaging and electrophysiology, we show that a transient neuronal depolarization inducing NMDA-dependent plasticity disrupts glutamate receptosome in a long-lasting manner at synapses and activates signaling pathways required for the expression of the initiated neuronal plasticity, such as ERK and mTOR pathways. Glutamate receptosome disruption also decreases the NMDA/AMPA ratio, freezing the sensitivity of the synapse to subsequent changes of neuronal activity. These data show the importance of a fine-tuning of protein-protein interactions within glutamate receptosome, driven by changes of neuronal activity, to control plasticity. In a mouse model of ASD, a truncated mutant form of Shank3 prevents the integrity of the glutamate receptosome. These mice display altered plasticity, anxiety-like, and stereotyped behaviors. Interestingly, repairing the integrity of glutamate receptosome and its sensitivity to the neuronal activity rescued synaptic transmission, plasticity, and some behavioral traits of Shank3∆C mice. Altogether, our findings characterize mechanisms by which Shank3 mutations cause ASD and highlight scaffold dynamics as new therapeutic target.

摘要

Shank3 单基因突变导致自闭症谱系障碍 (ASD)。Shank3 是谷氨酸受容体复合物的一部分,通过与支架蛋白 PSD95-GKAP-Shank3-Homer 的相互作用,将离子型 NMDA 受体与代谢型 mGlu5 受体物理连接。谷氨酸受容体复合物的主要生理功能是控制 NMDA 突触功能,这是诱导可塑性所必需的。完整的谷氨酸受容体复合物支持谷氨酸受体的激活和可塑性诱导,而谷氨酸受容体复合物的破坏会阻止受体的活性,从而阻止随后的可塑性诱导。尽管可能对变塑和认知行为有影响,但支架相互作用的动态及其后果仍未得到明确界定。在这里,我们使用 mGlu5-Homer 相互作用作为谷氨酸受容体复合物完整性的生物传感器,报告对可塑性诱导的突触可及性的变化。结合 BRET 成像和电生理学,我们表明,短暂的神经元去极化诱导 NMDA 依赖性可塑性会以持久的方式在突触处破坏谷氨酸受容体复合物,并激活启动神经元可塑性表达所需的信号通路,如 ERK 和 mTOR 通路。谷氨酸受容体复合物的破坏也会降低 NMDA/AMPA 比值,使突触对随后神经元活动变化的敏感性冻结。这些数据表明,在由神经元活动变化驱动的情况下,需要精细调节谷氨酸受容体复合物内的蛋白质-蛋白质相互作用,以控制可塑性。在 ASD 的小鼠模型中,Shank3 的截断突变形式会破坏谷氨酸受容体复合物的完整性。这些小鼠表现出可塑性改变、焦虑样和刻板行为。有趣的是,修复谷氨酸受容体复合物的完整性及其对神经元活动的敏感性可以挽救 Shank3∆C 小鼠的突触传递、可塑性和一些行为特征。总之,我们的研究结果描述了 Shank3 突变导致 ASD 的机制,并强调了支架动力学作为新的治疗靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验