Suppr超能文献

神经元激活后mTOR蛋白相互作用网络的解离因Shank3突变而改变。

Dissociation of the mTOR protein interaction network following neuronal activation is altered by Shank3 mutation.

作者信息

Wehle Devin T, Brown Emily A, Stamenkovic Vera, Harsh Felicia, Smith Stephen E P

机构信息

Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.

Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.

出版信息

bioRxiv. 2025 May 23:2025.05.20.655155. doi: 10.1101/2025.05.20.655155.

Abstract

The mechanistic target of Rapamycin (mTOR) kinase pathway plays critical roles in neuronal function and synaptic plasticity, and its dysfunction is implicated in numerous neurological and psychiatric disorders. Traditional linear models depict mTOR signaling as a sequential phosphorylation cascade, but accumulating evidence supports a model that includes signaling through dynamic protein-protein interaction networks. To examine how neuronal mTOR signaling discriminates between distinct stimuli, we quantified phosphorylation events and protein co-association networks in primary mouse cortical neurons. Unexpectedly, neuronal mTOR activation by IGF or glutamate triggered dissociation-rather than the anticipated assembly-of protein complexes involving mTOR complex1 (TORC1), mTOR complex 2 (TORC2), and translational machinery, distinguishing neurons from proliferative cells. Applying in vitro homeostatic scaling paradigms revealed distinct combinatorial encoding of synaptic scaling direction: both up- and down-scaling induced dissociation of translational complexes, but downscaling uniquely included dissociation of upstream pathway regulators. Cortical neurons from Shank3B knockout mice, modeling autism-associated Phelan-McDermid Syndrome, displayed baseline hyperactivation of the mTOR network, which reduced the dynamic range of network responses to homeostatic scaling and pharmacological inhibition. These findings reveal that neuronal mTOR signaling employs stimulus-specific combinations of dissociative protein interaction modules to encode opposing forms of synaptic plasticity.

摘要

雷帕霉素作用机制靶点(mTOR)激酶通路在神经元功能和突触可塑性中发挥关键作用,其功能障碍与多种神经和精神疾病有关。传统的线性模型将mTOR信号描绘为一个顺序磷酸化级联反应,但越来越多的证据支持一种包括通过动态蛋白质-蛋白质相互作用网络进行信号传导的模型。为了研究神经元mTOR信号如何区分不同的刺激,我们对原代小鼠皮层神经元中的磷酸化事件和蛋白质共关联网络进行了量化。出乎意料的是,胰岛素样生长因子(IGF)或谷氨酸对神经元mTOR的激活引发了涉及mTOR复合物1(TORC1)、mTOR复合物2(TORC2)和翻译机制的蛋白质复合物的解离,而非预期的组装,这将神经元与增殖细胞区分开来。应用体外稳态缩放范式揭示了突触缩放方向的独特组合编码:上调和下调缩放均诱导翻译复合物的解离,但下调缩放独特地包括上游通路调节因子的解离。模拟自闭症相关的费兰-麦克德米德综合征的Shank3B基因敲除小鼠的皮层神经元显示出mTOR网络的基线过度激活,这降低了网络对稳态缩放和药物抑制反应的动态范围。这些发现表明,神经元mTOR信号利用解离性蛋白质相互作用模块的刺激特异性组合来编码相反形式的突触可塑性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26c8/12139917/eb4971e1bcc3/nihpp-2025.05.20.655155v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验