Suppr超能文献

使用无限群体模型推断有限群体中的进化稳定性。

On inferring evolutionary stability in finite populations using infinite population models.

机构信息

Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.

International Institute for Applied Systems Analysis, Laxenburg, 2361, Austria.

出版信息

J Math Biol. 2021 Jul 31;83(2):21. doi: 10.1007/s00285-021-01636-9.

Abstract

Models of evolution by natural selection often make the simplifying assumption that populations are infinitely large. In this infinite population limit, rare mutations that are selected against always go extinct, whereas in finite populations they can persist and even reach fixation. Nevertheless, for mutations of arbitrarily small phenotypic effect, it is widely believed that in sufficiently large populations, if selection opposes the invasion of rare mutants, then it also opposes their fixation. Here, we identify circumstances under which infinite-population models do or do not accurately predict evolutionary outcomes in large, finite populations. We show that there is no population size above which considering only invasion generally suffices: for any finite population size, there are situations in which selection opposes the invasion of mutations of arbitrarily small effect, but favours their fixation. This is not an unlikely limiting case; it can occur when fitness is a smooth function of the evolving trait, and when the selection process is biologically sensible. Nevertheless, there are circumstances under which opposition of invasion does imply opposition of fixation: in fact, for the [Formula: see text]-player snowdrift game (a common model of cooperation) we identify sufficient conditions under which selection against rare mutants of small effect precludes their fixation-in sufficiently large populations-for any selection process. We also find conditions under which-no matter how large the population-the trait that fixes depends on the selection process, which is important because any particular selection process is only an approximation of reality.

摘要

自然选择进化模型通常做出一个简化假设,即群体是无限大的。在这个无限群体极限下,被选择淘汰的稀有突变总是会灭绝,而在有限群体中,它们可以持续存在,甚至达到固定。然而,对于任意小表型效应的突变,人们普遍认为,在足够大的群体中,如果选择反对稀有突变体的入侵,那么它也反对它们的固定。在这里,我们确定了在无限群体模型中,在足够大的有限群体中,是否准确预测进化结果的情况。我们表明,没有一个群体大小可以使只考虑入侵就足以充分预测:对于任何有限的群体大小,都存在一些情况,其中选择反对任意小效应的突变体的入侵,但有利于它们的固定。这不是一个不太可能的极限情况;当适应性是进化特征的平滑函数,并且选择过程在生物学上是合理的时,就会发生这种情况。然而,在某些情况下,入侵的反对确实意味着固定的反对:实际上,对于[公式:请参见文本]-player 雪堆博弈(合作的常见模型),我们确定了足够的条件,在这些条件下,对小效应的稀有突变体的选择反对排除了它们在足够大的群体中的固定性-对于任何选择过程。我们还发现了无论群体大小如何,固定的特征取决于选择过程的条件,这很重要,因为任何特定的选择过程都只是对现实的近似。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37d8/8325672/99df9814869c/285_2021_1636_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验