Department of Internal Medicine and Clinical Immunology, University Hospital, Angers, France; Mitolab, MitoVasc Institute, CNRS, 6015, INSERM U1083, University of Angers, France.
Department of Ophthalmology, University Hospital, Angers, France.
Ocul Surf. 2021 Oct;22:110-116. doi: 10.1016/j.jtos.2021.07.006. Epub 2021 Jul 28.
The lacrimal exocrinopathy of primary Sjögren's syndrome (pSS) is one of the main causes of severe dry eye syndrome and a burden for patients. Early recognition and treatment could prevent irreversible damage to lacrimal glands. The aim of this study was to find biomarkers in tears, using metabolomics and data mining approaches, in patients with newly-diagnosed pSS compared to other causes of dry eye syndrome.
A prospective cohort of 40 pSS and 40 non-pSS Sicca patients with dryness was explored through a standardized targeted metabolomic approach using liquid chromatography coupled with mass spectrometry. A metabolomic signature predictive of the pSS status was sought out using linear (logistic regression with elastic-net regularization) and non-linear (random forests) machine learning architectures, after splitting the studied population into training, validation and test sets.
Among the 104 metabolites accurately measured in tears, we identified a discriminant signature composed of nine metabolites (two amino acids: serine, aspartate; one biogenic amine: dopamine; six lipids: Lysophosphatidylcholine C16:1, C18:1, C18:2, sphingomyelin C16:0 and C22:3, and the phoshatidylcholine diacyl PCaa C42:4), with robust performances (ROC-AUC = 0.83) for predicting the pSS status. Adjustment for age, sex and anti-SSA antibodies did not disrupt the link between the metabolomic signature and the pSS status. The non-lipidic components also remained specific for pSS regardless of the dryness severity.
Our results reveal a metabolomic signature for tears that distinguishes pSS from other dry eye syndromes and further highlight nine key metabolites of potential interest for early diagnosis and therapeutics of pSS.
原发性干燥综合征(pSS)的泪液外分泌病变是导致严重干眼综合征的主要原因之一,给患者带来了沉重负担。早期识别和治疗可以防止泪腺的不可逆转损伤。本研究旨在通过代谢组学和数据挖掘方法,在新诊断的 pSS 患者与其他干眼综合征患者的泪液中寻找生物标志物。
通过使用液相色谱-质谱联用的标准化靶向代谢组学方法,对 40 例 pSS 和 40 例非 pSS 干燥综合征患者进行了前瞻性队列研究。采用线性(逻辑回归与弹性网络正则化)和非线性(随机森林)机器学习结构,在将研究人群分为训练集、验证集和测试集后,寻找具有预测 pSS 状态的代谢组学特征。
在准确测量的 104 种泪液代谢物中,我们确定了一个由 9 种代谢物组成的鉴别特征(两种氨基酸:丝氨酸、天冬氨酸;一种生物胺:多巴胺;六种脂质:溶血磷脂酰胆碱 C16:1、C18:1、C18:2、神经鞘磷脂 C16:0 和 C22:3,以及二酰基磷脂酰胆碱 PCaa C42:4),该特征对预测 pSS 状态具有良好的性能(ROC-AUC=0.83)。调整年龄、性别和抗 SSA 抗体后,代谢组学特征与 pSS 状态之间的联系并未中断。无论干燥严重程度如何,非脂类成分仍然是 pSS 的特异性标志物。
我们的研究结果揭示了一种区分 pSS 与其他干眼综合征的泪液代谢组学特征,并进一步突出了 9 种具有潜在治疗意义的关键代谢物,可用于 pSS 的早期诊断和治疗。