Suppr超能文献

晶状体蛋白的氧化还原化学:半胱氨酸体系。

Redox chemistry of lens crystallins: A system of cysteines.

机构信息

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.

出版信息

Exp Eye Res. 2021 Oct;211:108707. doi: 10.1016/j.exer.2021.108707. Epub 2021 Jul 29.

Abstract

The nuclear region of the lens is metabolically quiescent, but it is far from inert chemically. Without cellular renewal and with decades of environmental exposures, the lens proteome, lipidome, and metabolome change. The lens crystallins have evolved exquisite mechanisms for resisting, slowing, adapting to, and perhaps even harnessing the effects of these cumulative chemical modifications to minimize the amount of light-scattering aggregation in the lens over a lifetime. Redox chemistry is a major factor in these damages and mitigating adaptations, and as such, it is likely to be a key component of any successful therapeutic strategy for preserving or rescuing lens transparency, and perhaps flexibility, during aging. Protein redox chemistry is typically mediated by Cys residues. This review will therefore focus primarily on the Cys-rich γ-crystallins of the human lens, taking care to extend these findings to the β- and α-crystallins where pertinent.

摘要

晶状体的核区代谢静止,但在化学上远非惰性。没有细胞更新,加上几十年的环境暴露,晶状体的蛋白质组、脂质组和代谢组都会发生变化。晶状体晶体蛋白已经进化出了精致的机制来抵抗、减缓、适应,甚至可能利用这些累积的化学修饰的影响,以最大限度地减少晶状体在一生中的光散射聚集。氧化还原化学是这些损伤和缓解适应的一个主要因素,因此,它很可能是任何成功的治疗策略的关键组成部分,以在衰老过程中保持或恢复晶状体的透明度,甚至是弹性。蛋白质氧化还原化学通常由 Cys 残基介导。因此,本综述将主要关注人晶状体富含半胱氨酸的γ-晶体蛋白,并注意将这些发现扩展到β和α-晶体蛋白中。

相似文献

1
Redox chemistry of lens crystallins: A system of cysteines.
Exp Eye Res. 2021 Oct;211:108707. doi: 10.1016/j.exer.2021.108707. Epub 2021 Jul 29.
2
The Functional Significance of High Cysteine Content in Eye Lens γ-Crystallins.
Biomolecules. 2024 May 17;14(5):594. doi: 10.3390/biom14050594.
3
Thiolation of the gammaB-crystallins in intact bovine lens exposed to hydrogen peroxide.
J Biol Chem. 1999 Feb 19;274(8):4735-42. doi: 10.1074/jbc.274.8.4735.
4
Reactive cysteine residues in the oxidative dimerization and Cu induced aggregation of human γD-crystallin: Implications for age-related cataract.
Biochim Biophys Acta Mol Basis Dis. 2018 Nov;1864(11):3595-3604. doi: 10.1016/j.bbadis.2018.08.021. Epub 2018 Aug 18.
5
γ-Crystallin redox-detox in the lens.
J Biol Chem. 2018 Nov 16;293(46):18010-18011. doi: 10.1074/jbc.H118.006240.
8
Redox regulation in the lens.
Prog Retin Eye Res. 2003 Sep;22(5):657-82. doi: 10.1016/s1350-9462(03)00050-8.
9
Gamma crystallins of the human eye lens.
Biochim Biophys Acta. 2016 Jan;1860(1 Pt B):333-43. doi: 10.1016/j.bbagen.2015.06.007. Epub 2015 Jun 25.
10
Methylation and carbamylation of human gamma-crystallins.
Protein Sci. 2003 Aug;12(8):1762-74. doi: 10.1110/ps.0305403.

引用本文的文献

1
Oxidative Stress in Cataract Formation: Is There a Treatment Approach on the Horizon?
Antioxidants (Basel). 2024 Oct 16;13(10):1249. doi: 10.3390/antiox13101249.
2
The Functional Significance of High Cysteine Content in Eye Lens γ-Crystallins.
Biomolecules. 2024 May 17;14(5):594. doi: 10.3390/biom14050594.
4
The role of oxidative stress in the pathogenesis of ocular diseases: an overview.
Mol Biol Rep. 2024 Mar 27;51(1):454. doi: 10.1007/s11033-024-09425-5.
6
Role of Oxidative Stress in Ocular Diseases: A Balancing Act.
Metabolites. 2023 Jan 27;13(2):187. doi: 10.3390/metabo13020187.
7
Insights into the biochemical and biophysical mechanisms mediating the longevity of the transparent optics of the eye lens.
J Biol Chem. 2022 Nov;298(11):102537. doi: 10.1016/j.jbc.2022.102537. Epub 2022 Sep 27.
8
A native chemical chaperone in the human eye lens.
Elife. 2022 Jun 20;11:e76923. doi: 10.7554/eLife.76923.
9
Mutations of CX46/CX50 and Cataract Development.
Front Mol Biosci. 2022 Feb 11;9:842399. doi: 10.3389/fmolb.2022.842399. eCollection 2022.
10
Alzheimer's disease amyloid-β pathology in the lens of the eye.
Exp Eye Res. 2022 Aug;221:108974. doi: 10.1016/j.exer.2022.108974. Epub 2022 Feb 21.

本文引用的文献

1
A native chemical chaperone in the human eye lens.
Elife. 2022 Jun 20;11:e76923. doi: 10.7554/eLife.76923.
2
UniProt: the universal protein knowledgebase in 2021.
Nucleic Acids Res. 2021 Jan 8;49(D1):D480-D489. doi: 10.1093/nar/gkaa1100.
3
Cysteine oxidation and disulfide formation in the ribosomal exit tunnel.
Nat Commun. 2020 Nov 4;11(1):5569. doi: 10.1038/s41467-020-19372-x.
5
Human γS-Crystallin-Copper Binding Helps Buffer against Aggregation Caused by Oxidative Damage.
Biochemistry. 2020 Jun 30;59(25):2371-2385. doi: 10.1021/acs.biochem.0c00293. Epub 2020 Jun 12.
7
Direct Ultraviolet Laser-Induced Reduction of Disulfide Bonds in Insulin and Vasopressin.
ACS Omega. 2020 Apr 3;5(14):7962-7968. doi: 10.1021/acsomega.9b04375. eCollection 2020 Apr 14.
9
The structure and oxidation of the eye lens chaperone αA-crystallin.
Nat Struct Mol Biol. 2019 Dec;26(12):1141-1150. doi: 10.1038/s41594-019-0332-9. Epub 2019 Dec 2.
10
Molecular Processes Implicated in Human Age-Related Nuclear Cataract.
Invest Ophthalmol Vis Sci. 2019 Dec 2;60(15):5007-5021. doi: 10.1167/iovs.19-27535.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验