Suppr超能文献

使用密集神经网络(DNN)估算神经介入手术期间患者眼晶状体剂量。

Estimation of Patient Eye-Lens Dose During Neuro-Interventional Procedures using a Dense Neural Network (DNN).

作者信息

Collins J, Sun S, Guo C, Podgorsak A, Rudin S, Bednarek D R

机构信息

The State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Canon Stroke and Vascular Research Center, 875 Ellicott St., Buffalo, NY 14203.

出版信息

Proc SPIE Int Soc Opt Eng. 2021 Feb;11595. doi: 10.1117/12.2580723. Epub 2021 Feb 15.

Abstract

The patient's eye-lens dose changes for each projection view during fluoroscopically-guided neuro-interventional procedures. Monte-Carlo (MC) simulation can be done to estimate lens dose but MC cannot be done in real-time to give feedback to the interventionalist. Deep learning (DL) models were investigated to estimate patient-lens dose for given exposure conditions to give real-time updates. MC simulations were done using a Zubal computational phantom to create a dataset of eye-lens dose values for training the DL models. Six geometric parameters (entrance-field size, LAO gantry angulation, patient x, y, z head position relative to the beam isocenter, and whether patient's right or left eye) were varied for the simulations. The dose for each combination of parameters was expressed as lens dose per entrance air kerma (mGy/Gy). Geometric parameter combinations associated with high-dose values were sampled more finely to generate more high-dose values for training purposes. Additionally, dose at intermediate parameter values was calculated by MC in order to validate the interpolation capabilities of DL. Data was split into training, validation and testing sets. Stacked models and median algorithms were implemented to create more robust models. Model performance was evaluated using mean absolute percentage error (MAPE). The goal for this DL model is that it be implemented into the Dose Tracking System (DTS) developed by our group. This would allow the DTS to infer the patient's eye-lens dose for real-time feedback and eliminate the need for a large database of pre-calculated values with interpolation capabilities.

摘要

在荧光透视引导下的神经介入手术过程中,患者晶状体的剂量会因每个投影视图而发生变化。可以进行蒙特卡罗(MC)模拟来估计晶状体剂量,但MC无法实时进行以向介入医生提供反馈。研究了深度学习(DL)模型,以在给定的曝光条件下估计患者晶状体剂量,从而提供实时更新。使用Zubal计算体模进行MC模拟,以创建用于训练DL模型的晶状体剂量值数据集。在模拟中,六个几何参数(入射野大小、左前斜位机架角度、患者头部相对于束等中心的x、y、z位置,以及患者的右眼或左眼)有所变化。每个参数组合的剂量表示为每入射空气比释动能的晶状体剂量(mGy/Gy)。对与高剂量值相关的几何参数组合进行更精细的采样,以生成更多用于训练的高剂量值。此外,通过MC计算中间参数值下的剂量,以验证DL的插值能力。数据被分为训练集、验证集和测试集。实施堆叠模型和中位数算法以创建更稳健的模型。使用平均绝对百分比误差(MAPE)评估模型性能。该DL模型的目标是将其应用于我们团队开发的剂量跟踪系统(DTS)中。这将使DTS能够推断患者的晶状体剂量以提供实时反馈,并消除对具有插值能力的大量预计算值数据库的需求。

相似文献

5
Investigation of organ dose variation with adult head size and pediatric age for neuro-interventional projections.
Proc SPIE Int Soc Opt Eng. 2018 Feb;10573. doi: 10.1117/12.2293958. Epub 2018 Mar 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验