Suppr超能文献

因果和直接连接性的超选择性重建及其在诱导多能干细胞神经元网络中的应用

Super-Selective Reconstruction of Causal and Direct Connectivity With Application to iPSC Neuronal Networks.

作者信息

Puppo Francesca, Pré Deborah, Bang Anne G, Silva Gabriel A

机构信息

BioCircuits Institute and Center for Engineered Natural Intelligence, University of California, San Diego, La Jolla, CA, United States.

Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.

出版信息

Front Neurosci. 2021 Jul 16;15:647877. doi: 10.3389/fnins.2021.647877. eCollection 2021.

Abstract

Despite advancements in the development of cell-based neuronal network models, the lack of appropriate computational tools limits their analyses. Methods aimed at deciphering the effective connections between neurons from extracellular spike recordings would increase utility of local neural circuits, especially for studies of human neural development and disease based on induced pluripotent stem cells (hiPSC). Current techniques allow statistical inference of functional couplings in the network but are fundamentally unable to correctly identify indirect and apparent connections between neurons, generating redundant maps with limited ability to model the causal dynamics of the network. In this paper, we describe a novel mathematically rigorous, model-free method to map effective-direct and causal-connectivity of neuronal networks from multi-electrode array data. The inference algorithm uses a combination of statistical and deterministic indicators which, first, enables identification of all existing functional links in the network and then reconstructs the directed and causal connection diagram via a super-selective rule enabling highly accurate classification of direct, indirect, and apparent links. Our method can be generally applied to the functional characterization of any neuronal networks. Here, we show that, given its accuracy, it can offer important insights into the functional development of hiPSC-derived neuronal cultures.

摘要

尽管基于细胞的神经网络模型发展取得了进展,但缺乏合适的计算工具限制了对它们的分析。旨在从细胞外尖峰记录中解读神经元之间有效连接的方法,将提高局部神经回路的实用性,特别是对于基于诱导多能干细胞(hiPSC)的人类神经发育和疾病研究。当前技术允许对网络中的功能耦合进行统计推断,但从根本上无法正确识别神经元之间的间接和明显连接,生成的冗余图谱对网络因果动态的建模能力有限。在本文中,我们描述了一种新颖的、数学上严谨的、无模型的方法,用于从多电极阵列数据绘制神经网络的有效直接和因果连接图。该推理算法使用统计和确定性指标的组合,首先能够识别网络中所有现有的功能链接,然后通过超选择规则重建有向和因果连接图,从而能够对直接、间接和明显链接进行高度准确的分类。我们的方法可以普遍应用于任何神经网络的功能表征。在此,我们表明,鉴于其准确性,它可以为hiPSC衍生的神经元培养物的功能发育提供重要见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34cc/8323822/398182547f6c/fnins-15-647877-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验