Han Yanqiang, Wang Zhilong, Wei Zhiyun, Schapiro Igor, Li Jinjin
Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, China.
Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
Comput Struct Biotechnol J. 2021;19:4184-4191. doi: 10.1016/j.csbj.2021.07.026. Epub 2021 Jul 26.
During the rapid worldwide spread of SARS-CoV-2, the viral genome has been undergoing numerous mutations, especially in the spike (S) glycoprotein gene that encode a type-I fusion protein, which plays an important role in the infectivity and transmissibility of the virus into the host cell. In this work, we studied the effect of S glycoprotein residue mutations on the binding affinity and mechanisms of SARS-CoV-2 using molecular dynamics simulations and sequence analysis. We quantitatively determined the degrees of binding affinity caused by different S glycoprotein mutations, and the result indicated that the 501Y.V1 variant yielded the highest enhancements in binding affinity (increased by 36.8%), followed by the N439K variant (increased by 29.5%) and the 501Y.V2 variant (increased by 19.6%). We further studied the structures, chemical bonds, binding free energies (enthalpy and entropy), and residue contribution decompositions of these variants to provide physical explanations for the changes in SARS-CoV-2 binding affinity caused by these residue mutations. This research identified the binding affinity differences of the SARS-CoV-2 variants and provides a basis for further surveillance, diagnosis, and evaluation of mutated viruses.
在严重急性呼吸综合征冠状病毒2(SARS-CoV-2)在全球迅速传播期间,病毒基因组发生了大量突变,尤其是在编码I型融合蛋白的刺突(S)糖蛋白基因中,该蛋白在病毒感染宿主细胞的传染性和传播性中起重要作用。在这项工作中,我们使用分子动力学模拟和序列分析研究了S糖蛋白残基突变对SARS-CoV-2结合亲和力和机制的影响。我们定量测定了不同S糖蛋白突变引起的结合亲和力程度,结果表明,501Y.V1变体的结合亲和力增强最高(增加了36.8%),其次是N439K变体(增加了29.5%)和501Y.V2变体(增加了19.6%)。我们进一步研究了这些变体的结构、化学键、结合自由能(焓和熵)以及残基贡献分解,为这些残基突变引起的SARS-CoV-2结合亲和力变化提供物理解释。本研究确定了SARS-CoV-2变体的结合亲和力差异,为进一步监测、诊断和评估突变病毒提供了依据。