Suppr超能文献

使用光学传感器和机器学习技术的无创血糖监测在糖尿病应用中的研究

Non-Invasive Glucose Monitoring Using Optical Sensor and Machine Learning Techniques for Diabetes Applications.

作者信息

Shokrekhodaei Maryamsadat, Cistola David P, Roberts Robert C, Quinones Stella

机构信息

Electrical and Computer Engineering Department, The University of Texas at El Paso, El Paso, TX 79968 USA.

Center of Emphasis in Diabetes & Metabolism, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA.

出版信息

IEEE Access. 2021;9:73029-73045. doi: 10.1109/access.2021.3079182. Epub 2021 May 11.

Abstract

Diabetes is a major public health challenge affecting more than 451 million people. Physiological and experimental factors influence the accuracy of non-invasive glucose monitoring, and these need to be overcome before replacing the finger prick method. Also, the suitable employment of machine learning techniques can significantly improve the accuracy of glucose predictions. One aim of this study is to use light sources with multiple wavelengths to enhance the sensitivity and selectivity of glucose detection in an aqueous solution. Multiple wavelength measurements have the potential to compensate for errors associated with inter- and intra-individual differences in blood and tissue components. In this study, the transmission measurements of a custom built optical sensor are examined using 18 different wavelengths between 410 and 940 nm. Results show a high correlation value (0.98) between glucose concentration and transmission intensity for four wavelengths (485, 645, 860 and 940 nm). Five machine learning methods are investigated for glucose predictions. When regression methods are used, 9% of glucose predictions fall outside the correct range (normal, hypoglycemic or hyperglycemic). The prediction accuracy is improved by applying classification methods on sets of data arranged into 21 classes. Data within each class corresponds to a discrete 10 mg/dL glucose range. Classification based models outperform regression, and among them, the support vector machine is the most successful with F1-score of 99%. Additionally, Clarke error grid shows that 99.75% of glucose readings fall within the clinically acceptable zones. This is an important step towards critical diagnosis during an emergency patient situation.

摘要

糖尿病是一项重大的公共卫生挑战,影响着超过4.51亿人。生理和实验因素会影响无创血糖监测的准确性,在取代指尖采血法之前,这些因素需要被克服。此外,适当地运用机器学习技术能够显著提高血糖预测的准确性。本研究的一个目标是使用多波长光源来提高水溶液中葡萄糖检测的灵敏度和选择性。多波长测量有潜力补偿与血液和组织成分的个体间和个体内差异相关的误差。在本研究中,使用定制光学传感器在410至940纳米之间的18个不同波长下进行透射测量。结果显示,四个波长(485、645、860和940纳米)的葡萄糖浓度与透射强度之间具有较高的相关值(0.98)。研究了五种机器学习方法用于葡萄糖预测。当使用回归方法时,9%的葡萄糖预测超出正确范围(正常、低血糖或高血糖)。通过对排列成21类的数据应用分类方法,预测准确性得到提高。每类数据对应一个离散的10毫克/分升葡萄糖范围。基于分类的模型优于回归模型,其中支持向量机最为成功,F1分数为99%。此外,克拉克误差网格显示99.75%的血糖读数落在临床可接受区域内。这是朝着紧急患者情况中的关键诊断迈出的重要一步。

相似文献

1
Non-Invasive Glucose Monitoring Using Optical Sensor and Machine Learning Techniques for Diabetes Applications.
IEEE Access. 2021;9:73029-73045. doi: 10.1109/access.2021.3079182. Epub 2021 May 11.
2
Non-invasive glucose prediction and classification using NIR technology with machine learning.
Heliyon. 2024 Mar 28;10(7):e28720. doi: 10.1016/j.heliyon.2024.e28720. eCollection 2024 Apr 15.
3
Machine learning models for non-invasive glucose measurement: towards diabetes management in smart healthcare.
Health Technol (Berl). 2022;12(5):955-970. doi: 10.1007/s12553-022-00690-7. Epub 2022 Aug 18.
4
Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
Artif Intell Med. 2019 Jul;98:109-134. doi: 10.1016/j.artmed.2019.07.007. Epub 2019 Jul 26.
6
Establishment of noninvasive diabetes risk prediction model based on tongue features and machine learning techniques.
Int J Med Inform. 2021 May;149:104429. doi: 10.1016/j.ijmedinf.2021.104429. Epub 2021 Feb 22.
7
Nonlinear Machine Learning Models for Insulin Bolus Estimation in Type 1 Diabetes Therapy.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5502-5505. doi: 10.1109/EMBC44109.2020.9176021.
10
Design and Development of a Non-invasive Opto-Electronic Sensor for Blood Glucose Monitoring Using a Visible Light Source.
Cureus. 2024 May 21;16(5):e60745. doi: 10.7759/cureus.60745. eCollection 2024 May.

引用本文的文献

4
Prototype analysis of a low-power, small-scale wearable medical device.
J Electr Bioimpedance. 2025 Jan 4;15(1):169-176. doi: 10.2478/joeb-2024-0020. eCollection 2024 Jan.
5
Classification of glucose-level in deionized water using machine learning models and data pre-processing technique.
PLoS One. 2024 Dec 5;19(12):e0311482. doi: 10.1371/journal.pone.0311482. eCollection 2024.
6
AI-Based Noninvasive Blood Glucose Monitoring: Scoping Review.
J Med Internet Res. 2024 Nov 19;26:e58892. doi: 10.2196/58892.
10
RFFE - Random Forest Fuzzy Entropy for the classification of Diabetes Mellitus.
AIMS Public Health. 2023 May 23;10(2):422-442. doi: 10.3934/publichealth.2023030. eCollection 2023.

本文引用的文献

2
Review of Non-invasive Glucose Sensing Techniques: Optical, Electrical and Breath Acetone.
Sensors (Basel). 2020 Feb 25;20(5):1251. doi: 10.3390/s20051251.
3
Removing subject dependencies on Non-Invasive Blood Glucose Measurement using Hybrid Techniques.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:7197-7200. doi: 10.1109/EMBC.2019.8856391.
4
Broadband polarimetric glucose determination in protein containing media using characteristic optical rotatory dispersion.
Biomed Opt Express. 2019 Nov 19;10(12):6340-6350. doi: 10.1364/BOE.10.006340. eCollection 2019 Dec 1.
5
Effects of Distance Measure Choice on K-Nearest Neighbor Classifier Performance: A Review.
Big Data. 2019 Dec;7(4):221-248. doi: 10.1089/big.2018.0175. Epub 2019 Aug 14.
7
Non-invasive blood glucose measurement of 95% certainty by pressure regulated Mid-IR.
Talanta. 2019 May 15;197:211-217. doi: 10.1016/j.talanta.2019.01.034. Epub 2019 Jan 8.
8
Millimeter-wave Adaptive Glucose Concentration Estimation with Complex-Valued Neural Networks.
IEEE Trans Biomed Eng. 2018 Nov 23. doi: 10.1109/TBME.2018.2883085.
9
Use of Raman spectroscopy to screen diabetes mellitus with machine learning tools.
Biomed Opt Express. 2018 Sep 26;9(10):4998-5010. doi: 10.1364/BOE.9.004998. eCollection 2018 Oct 1.
10
Critical-depth Raman spectroscopy enables home-use non-invasive glucose monitoring.
PLoS One. 2018 May 11;13(5):e0197134. doi: 10.1371/journal.pone.0197134. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验