Suppr超能文献

使用光学传感器和机器学习技术的无创血糖监测在糖尿病应用中的研究

Non-Invasive Glucose Monitoring Using Optical Sensor and Machine Learning Techniques for Diabetes Applications.

作者信息

Shokrekhodaei Maryamsadat, Cistola David P, Roberts Robert C, Quinones Stella

机构信息

Electrical and Computer Engineering Department, The University of Texas at El Paso, El Paso, TX 79968 USA.

Center of Emphasis in Diabetes & Metabolism, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA.

出版信息

IEEE Access. 2021;9:73029-73045. doi: 10.1109/access.2021.3079182. Epub 2021 May 11.

Abstract

Diabetes is a major public health challenge affecting more than 451 million people. Physiological and experimental factors influence the accuracy of non-invasive glucose monitoring, and these need to be overcome before replacing the finger prick method. Also, the suitable employment of machine learning techniques can significantly improve the accuracy of glucose predictions. One aim of this study is to use light sources with multiple wavelengths to enhance the sensitivity and selectivity of glucose detection in an aqueous solution. Multiple wavelength measurements have the potential to compensate for errors associated with inter- and intra-individual differences in blood and tissue components. In this study, the transmission measurements of a custom built optical sensor are examined using 18 different wavelengths between 410 and 940 nm. Results show a high correlation value (0.98) between glucose concentration and transmission intensity for four wavelengths (485, 645, 860 and 940 nm). Five machine learning methods are investigated for glucose predictions. When regression methods are used, 9% of glucose predictions fall outside the correct range (normal, hypoglycemic or hyperglycemic). The prediction accuracy is improved by applying classification methods on sets of data arranged into 21 classes. Data within each class corresponds to a discrete 10 mg/dL glucose range. Classification based models outperform regression, and among them, the support vector machine is the most successful with F1-score of 99%. Additionally, Clarke error grid shows that 99.75% of glucose readings fall within the clinically acceptable zones. This is an important step towards critical diagnosis during an emergency patient situation.

摘要

糖尿病是一项重大的公共卫生挑战,影响着超过4.51亿人。生理和实验因素会影响无创血糖监测的准确性,在取代指尖采血法之前,这些因素需要被克服。此外,适当地运用机器学习技术能够显著提高血糖预测的准确性。本研究的一个目标是使用多波长光源来提高水溶液中葡萄糖检测的灵敏度和选择性。多波长测量有潜力补偿与血液和组织成分的个体间和个体内差异相关的误差。在本研究中,使用定制光学传感器在410至940纳米之间的18个不同波长下进行透射测量。结果显示,四个波长(485、645、860和940纳米)的葡萄糖浓度与透射强度之间具有较高的相关值(0.98)。研究了五种机器学习方法用于葡萄糖预测。当使用回归方法时,9%的葡萄糖预测超出正确范围(正常、低血糖或高血糖)。通过对排列成21类的数据应用分类方法,预测准确性得到提高。每类数据对应一个离散的10毫克/分升葡萄糖范围。基于分类的模型优于回归模型,其中支持向量机最为成功,F1分数为99%。此外,克拉克误差网格显示99.75%的血糖读数落在临床可接受区域内。这是朝着紧急患者情况中的关键诊断迈出的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f591/8321391/fb74af58e749/nihms-1719268-f0006.jpg

相似文献

引用本文的文献

4
Prototype analysis of a low-power, small-scale wearable medical device.低功耗、小规模可穿戴医疗设备的原型分析
J Electr Bioimpedance. 2025 Jan 4;15(1):169-176. doi: 10.2478/joeb-2024-0020. eCollection 2024 Jan.
10
RFFE - Random Forest Fuzzy Entropy for the classification of Diabetes Mellitus.用于糖尿病分类的随机森林模糊熵(RFFE)
AIMS Public Health. 2023 May 23;10(2):422-442. doi: 10.3934/publichealth.2023030. eCollection 2023.

本文引用的文献

9
Use of Raman spectroscopy to screen diabetes mellitus with machine learning tools.使用拉曼光谱结合机器学习工具筛查糖尿病。
Biomed Opt Express. 2018 Sep 26;9(10):4998-5010. doi: 10.1364/BOE.9.004998. eCollection 2018 Oct 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验