Fitzgerald Zachary, Morita-Sherman Marcia, Hogue Olivia, Joseph Boney, Alvim Marina K M, Yasuda Clarissa L, Vegh Deborah, Nair Dileep, Burgess Richard, Bingaman William, Najm Imad, Kattan Michael W, Blumcke Ingmar, Worrell Gregory, Brinkmann Benjamin H, Cendes Fernando, Jehi Lara
Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA.
Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, Ohio, USA.
Epilepsia. 2021 Oct;62(10):2439-2450. doi: 10.1111/epi.17024. Epub 2021 Aug 2.
This study aims to evaluate the role of scalp electroencephalography (EEG; ictal and interictal patterns) in predicting resective epilepsy surgery outcomes. We use the data to further develop a nomogram to predict seizure freedom.
We retrospectively reviewed the scalp EEG findings and clinical data of patients who underwent surgical resection at three epilepsy centers. Using both EEG and clinical variables categorized into 13 isolated candidate predictors and 6 interaction terms, we built a multivariable Cox proportional hazards model to predict seizure freedom 2 years after surgery. Harrell's step-down procedure was used to sequentially eliminate the least-informative variables from the model until the change in the concordance index (c-index) with variable removal was less than 0.01. We created a separate model using only clinical variables. Discrimination of the two models was compared to evaluate the role of scalp EEG in seizure-freedom prediction.
Four hundred seventy patient records were analyzed. Following internal validation, the full Clinical + EEG model achieved an optimism-corrected c-index of 0.65, whereas the c-index of the model without EEG data was 0.59. The presence of focal to bilateral tonic-clonic seizures (FBTCS), high preoperative seizure frequency, absence of hippocampal sclerosis, and presence of nonlocalizable seizures predicted worse outcome. The presence of FBTCS had the largest impact for predicting outcome. The analysis of the models' interactions showed that in patients with unilateral interictal epileptiform discharges (IEDs), temporal lobe surgery cases had a better outcome. In cases with bilateral IEDs, abnormal magnetic resonance imaging (MRI) predicted worse outcomes, and in cases without IEDs, patients with extratemporal epilepsy and abnormal MRI had better outcomes.
This study highlights the value of scalp EEG, particularly the significance of IEDs, in predicting surgical outcome. The nomogram delivers an individualized prediction of postoperative outcome, and provides a unique assessment of the relationship between the outcome and preoperative findings.
本研究旨在评估头皮脑电图(EEG;发作期和发作间期模式)在预测切除性癫痫手术结果中的作用。我们利用这些数据进一步开发一种列线图来预测无癫痫发作情况。
我们回顾性分析了在三个癫痫中心接受手术切除的患者的头皮脑电图结果和临床数据。将脑电图和临床变量分为13个独立的候选预测因素和6个交互项,我们构建了一个多变量Cox比例风险模型来预测术后2年的无癫痫发作情况。使用哈雷尔逐步法从模型中依次剔除信息最少的变量,直到随着变量剔除一致性指数(c指数)的变化小于0.01。我们仅使用临床变量创建了一个单独的模型。比较这两个模型的辨别力,以评估头皮脑电图在无癫痫发作预测中的作用。
分析了470例患者的记录。经过内部验证,完整的临床+脑电图模型的乐观校正c指数为0.65,而无脑电图数据的模型的c指数为0.59。局灶性至双侧强直阵挛发作(FBTCS)的存在、术前癫痫发作频率高、无海马硬化以及存在不可定位的发作预示着预后较差。FBTCS的存在对预测结果的影响最大。对模型交互作用的分析表明,在有单侧发作间期癫痫样放电(IEDs)的患者中,颞叶手术病例的预后较好。在有双侧IEDs的病例中,异常的磁共振成像(MRI)预示着预后较差,而在无IEDs的病例中,颞叶外癫痫且MRI异常的患者预后较好。
本研究强调了头皮脑电图在预测手术结果中的价值,尤其是IEDs的重要性。列线图提供了术后结果的个体化预测,并对结果与术前发现之间的关系提供了独特的评估。