Casseb Raphael Fernandes, de Campos Brunno Machado, Loos Wallace Souza, Barbosa Marcelo Eduardo Ramos, Alvim Marina Koutsodontis Machado, Paulino Gabriel Chagas Lutfala, Pucci Francesco, Worrell Samuel, de Souza Roberto Medeiros, Jehi Lara, Cendes Fernando
Universidade Estadual de Campinas (UNICAMP), Neuroimaging Laboratory, Campinas, SP, Brazil.
Advanced Imaging and Artificial Intelligence Lab, University of Calgary, Calgary, AB, Canada.
medRxiv. 2024 Apr 17:2023.11.16.23298572. doi: 10.1101/2023.11.16.23298572.
The rapid and constant development of deep learning (DL) strategies is pushing forward the quality of object segmentation in images from diverse fields of interest. In particular, these algorithms can be very helpful in delineating brain abnormalities (lesions, tumors, lacunas, etc), enabling the extraction of information such as volume and location, that can inform doctors or feed predictive models. Here, we describe ResectVol DL, a fully automatic tool developed to segment resective lacunas in brain images of patients with epilepsy. ResectVol DL relies on the nnU-Net framework that leverages the 3D U-Net deep learning architecture. T1-weighted MRI datasets from 120 patients (57 women; 31.5 ± 15.9 years old at surgery) were used to train (n=78) and test (n=48) our tool. Manual segmentations were carried out by five different raters and were considered as ground truth for performance assessment. We compared ResectVol DL with two other fully automatic methods: ResectVol 1.1.2 and DeepResection, using the Dice similarity coefficient (DSC), Pearson's correlation coefficient, and relative difference to manual segmentation. ResectVol DL presented the highest median DSC (0.92 vs. 0.78 and 0.90), the highest correlation coefficient (0.99 vs. 0.63 and 0.94), and the lowest median relative difference (9 vs. 44 and 12 %). Overall, we demonstrate that ResectVol DL accurately segments brain lacunas, which has the potential to assist in the development of predictive models for postoperative cognitive and seizure outcomes.
深度学习(DL)策略的快速持续发展推动了来自不同感兴趣领域的图像中目标分割的质量。特别是,这些算法在描绘脑部异常(病变、肿瘤、腔隙等)方面非常有帮助,能够提取诸如体积和位置等信息,这些信息可以为医生提供参考或输入到预测模型中。在此,我们描述了ResectVol DL,这是一种为癫痫患者脑部图像中的切除性腔隙分割而开发的全自动工具。ResectVol DL依赖于利用3D U-Net深度学习架构的nnU-Net框架。使用来自120名患者(57名女性;手术时年龄31.5±15.9岁)的T1加权MRI数据集来训练(n = 78)和测试(n = 48)我们的工具。由五名不同的评估者进行手动分割,并将其视为性能评估的基准真值。我们使用Dice相似系数(DSC)、Pearson相关系数以及与手动分割的相对差异,将ResectVol DL与其他两种全自动方法:ResectVol 1.1.2和DeepResection进行比较。ResectVol DL呈现出最高的中位数DSC(0.92对0.78和0.90)、最高的相关系数(0.99对0.63和0.94)以及最低的中位数相对差异(9%对44%和12%)。总体而言,我们证明ResectVol DL能够准确地分割脑部腔隙,这有可能有助于开发术后认知和癫痫发作结果的预测模型。