Department of Urology, Rennes University Hospital, Rennes, France.
Department of Medical Oncology, Centre Eugene Marquis, Rennes, France.
Int J Clin Oncol. 2021 Nov;26(11):2087-2093. doi: 10.1007/s10147-021-02003-w. Epub 2021 Aug 2.
To evaluate the value of image-based texture analysis for predicting progression-free survival (PFS) and overall survival (OS) in patients with metastatic clear cell renal carcinoma (cCCR) treated with nivolumab.
This retrospective study included 48 patients with metastatic cCCR treated with nivolumab. Nivolumab was used as a second- or third-line monotherapy. Texture analysis of metastatic lesions was performed on CT scanners obtained within 1 month before treatment. Texture features related to the gray-level histogram, gray-level co-occurrence, run-length matrix features, autoregressive model features, and Haar wavelet feature were extracted. Lasso penalized Cox regression analyses were performed to identify independent predictors of PFS and OS.
Median PFS and OS were 5.7 and 13.8 months. 39 patients experienced progression and 27 died. The Lasso penalized Cox regression analysis identified three texture parameters as potential predictors of PFS: skewness, S.2.2. Correlat and S.1.1. SumVarnc. Multivariate Cox regression analysis confirmed skewness (HR (95% CI) 1.49 [1.21-1.85], p < 0.001) as an independent predictor of PFS. Regarding OS, the Lasso penalized Cox regression analysis identified three texture parameters as potential predictors of OS: S20SumVarnc, S22Contrast and S22Entropy. Multivariate Cox regression analysis confirmed S22Entropy (HR (95% CI) 1.68 (1.31-2.14), p < 0.001) as an independent predictor of OS.
Results from this preliminary study suggest that CT texture analysis might be a promising quantitative imaging tool that predicts oncological outcomes after starting nivolumab treatment.
评估基于图像的纹理分析在预测接受纳武利尤单抗治疗的转移性透明细胞肾细胞癌(mcccr)患者无进展生存期(PFS)和总生存期(OS)中的价值。
本回顾性研究纳入了 48 例接受纳武利尤单抗治疗的 mcccr 患者。纳武利尤单抗作为二线或三线单药治疗。在治疗前 1 个月内,使用 CT 扫描仪对转移性病变进行纹理分析。提取与灰度直方图、灰度共生矩阵特征、运行长度矩阵特征、自回归模型特征和 Haar 小波特征相关的纹理特征。使用 Lasso 惩罚 Cox 回归分析确定 PFS 和 OS 的独立预测因子。
中位 PFS 和 OS 分别为 5.7 和 13.8 个月。39 例患者发生进展,27 例患者死亡。Lasso 惩罚 Cox 回归分析确定了三个纹理参数作为 PFS 的潜在预测因子:偏度、S.2.2.Correlat 和 S.1.1.SumVarnc。多变量 Cox 回归分析证实偏度(HR(95%CI)1.49[1.21-1.85],p<0.001)是 PFS 的独立预测因子。关于 OS,Lasso 惩罚 Cox 回归分析确定了三个纹理参数作为 OS 的潜在预测因子:S20SumVarnc、S22Contrast 和 S22Entropy。多变量 Cox 回归分析证实 S22Entropy(HR(95%CI)1.68(1.31-2.14),p<0.001)是 OS 的独立预测因子。
这项初步研究的结果表明,CT 纹理分析可能是一种有前途的定量成像工具,可预测开始纳武利尤单抗治疗后的肿瘤学结果。