Suppr超能文献

探索CT纹理参数作为接受PD-1抑制剂纳武单抗治疗的转移性黑色素瘤患者生存的预测性和反应性影像生物标志物:一项使用Delta放射组学方法的初步研究。

Exploring CT Texture Parameters as Predictive and Response Imaging Biomarkers of Survival in Patients With Metastatic Melanoma Treated With PD-1 Inhibitor Nivolumab: A Pilot Study Using a Delta-Radiomics Approach.

作者信息

Guerrisi Antonino, Russillo Michelangelo, Loi Emiliano, Ganeshan Balaji, Ungania Sara, Desiderio Flora, Bruzzaniti Vicente, Falcone Italia, Renna Davide, Ferraresi Virginia, Caterino Mauro, Solivetti Francesco Maria, Cognetti Francesco, Morrone Aldo

机构信息

Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, Rome, Italy.

Medical Oncology Unit 1, Department of Clinical and Cancer Research IRCCS Regina Elena National Cancer Institute, Rome, Italy.

出版信息

Front Oncol. 2021 Oct 7;11:704607. doi: 10.3389/fonc.2021.704607. eCollection 2021.

Abstract

In the era of artificial intelligence and precision medicine, the use of quantitative imaging methodological approaches could improve the cancer patient's therapeutic approaches. Specifically, our pilot study aims to explore whether CT texture features on both baseline and first post-treatment contrast-enhanced CT may act as a predictor of overall survival (OS) and progression-free survival (PFS) in metastatic melanoma (MM) patients treated with the PD-1 inhibitor Nivolumab. Ninety-four lesions from 32 patients treated with Nivolumab were analyzed. Manual segmentation was performed using a free-hand polygon approach by drawing a region of interest (ROI) around each target lesion (up to five lesions were selected per patient according to RECIST 1.1). Filtration-histogram-based texture analysis was employed using a commercially available research software called TexRAD (Feedback Medical Ltd, London, UK; https://fbkmed.com/texrad-landing-2/) Percentage changes in texture features were calculated to perform delta-radiomics analysis. Texture feature kurtosis at fine and medium filter scale predicted OS and PFS. A higher kurtosis is correlated with good prognosis; kurtosis values greater than 1.11 for SSF = 2 and 1.20 for SSF = 3 were indicators of higher OS (fine texture: 192 HR = 0.56, 95% CI = 0.32-0.96, = 0.03; medium texture: HR = 0.54, 95% CI = 0.29-0.99, = 0.04) and PFS (fine texture: HR = 0.53, 95% CI = 0.29-0.95, = 0.03; medium texture: HR = 0.49, 209 95% CI = 0.25-0.96, = 0.03). In delta-radiomics analysis, the entropy percentage variation correlated with OS and PFS. Increasing entropy indicates a worse outcome. An entropy variation greater than 5% was an indicator of bad prognosis. CT delta-texture analysis quantified as entropy predicted OS and PFS. Baseline CT texture quantified as kurtosis also predicted survival baseline. Further studies with larger cohorts are mandatory to confirm these promising exploratory results.

摘要

在人工智能和精准医学时代,使用定量成像方法可以改善癌症患者的治疗方法。具体而言,我们的初步研究旨在探讨基线和首次治疗后对比增强CT上的CT纹理特征是否可作为接受PD-1抑制剂纳武单抗治疗的转移性黑色素瘤(MM)患者总生存期(OS)和无进展生存期(PFS)的预测指标。分析了32例接受纳武单抗治疗患者的94个病灶。采用徒手多边形方法进行手动分割,在每个目标病灶周围绘制感兴趣区域(ROI)(根据RECIST 1.1,每位患者最多选择5个病灶)。使用一款名为TexRAD的商用研究软件(英国伦敦Feedback Medical Ltd;https://fbkmed.com/texrad-landing-2/)进行基于过滤直方图的纹理分析。计算纹理特征的百分比变化以进行增量放射组学分析。精细和中等过滤尺度下的纹理特征峰度预测了OS和PFS。较高的峰度与良好的预后相关;对于SSF = 2,峰度值大于1.11,对于SSF = 3,峰度值大于1.20是较高OS(精细纹理:HR = 0.56,95%CI = 0.32 - 0.96,P = 0.03;中等纹理:HR = 0.54,95%CI = 0.29 - 0.99,P = 0.04)和PFS(精细纹理:HR = 0.53,95%CI = 0.29 - 0.95,P = 0.03;中等纹理:HR = 0.49,95%CI = 0.25 - 0.96,P = 0.03)的指标。在增量放射组学分析中,熵百分比变化与OS和PFS相关。熵增加表明预后较差。熵变化大于5%是预后不良的指标。以熵量化的CT增量纹理分析预测了OS和PFS。以峰度量化的基线CT纹理也预测了生存基线。必须进行更大样本量的进一步研究以证实这些有前景的探索性结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3f7/8529867/3999ae96da01/fonc-11-704607-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验