Suppr超能文献

用于降低含病毒呼吸道飞沫经手传播几率的微结构化表面。

Microstructured Surfaces for Reducing Chances of Fomite Transmission via Virus-Containing Respiratory Droplets.

机构信息

Department of Mechanical Engineering, Changwon National University, Changwon 51140, South Korea.

Department of Smart Manufacturing Engineering, Changwon National University, Changwon 51140, South Korea.

出版信息

ACS Nano. 2021 Sep 28;15(9):14049-14060. doi: 10.1021/acsnano.1c01636. Epub 2021 Aug 2.

Abstract

Evaporation-induced particle aggregation in drying droplets is of significant importance in the prevention of pathogen transfer due to the possibility of indirect fomite transmission of the infectious virus particles. In this study, particle aggregation was directionally controlled using contact line dynamics (pinned or slipping) and geometrical gradients on microstructured surfaces by the systematic investigation of the evaporation process on sessile droplets and sprayed microdroplets laden with virus-simulant nanoparticles. Using this mechanism, we designed robust particle capture surfaces by significantly inhibiting the contact transfer of particles from fomite surfaces. For the proof-of-concept, interconnected hexagonal and inverted pyramidal microwall were fabricated using ultraviolet-based nanoimprint lithography, which is considered to be a promising scalable manufacturing process. We demonstrated the potentials of an engineered microcavity surface to limit the contact transfer of particle aggregates deposited with the evaporation of microdroplets by 93% for hexagonal microwall and by 96% for inverted pyramidal microwall. The particle capture potential of the interconnected microstructures was also investigated using biological particles, including adenoviruses and lung-derived extracellular vesicles. The findings indicate that the proposed microstructured surfaces can reduce the indirect fomite transmission of highly infectious agents, including norovirus, rotavirus, or SARS-CoV-2, via respiratory droplets.

摘要

干燥液滴中因蒸发诱导的颗粒聚集在防止病原体转移方面具有重要意义,因为传染性病毒颗粒可能通过间接接触污染物传播。在这项研究中,通过在固着液滴和载有病毒模拟纳米颗粒的喷雾微滴上系统地研究蒸发过程,使用接触线动力学(固定或滑动)和微结构化表面上的几何梯度来定向控制颗粒聚集。利用这种机制,我们通过显著抑制污染物表面上颗粒的接触转移,设计了稳健的颗粒捕获表面。为了验证这一概念,我们使用基于紫外线的纳米压印光刻技术制造了互连成六边形和倒金字塔形的微墙,这被认为是一种有前途的可扩展制造工艺。我们证明了工程微腔表面在限制由微滴蒸发引起的颗粒聚集体的接触转移方面的潜力,对于六边形微墙,其接触转移减少了 93%,对于倒金字塔形微墙,其接触转移减少了 96%。我们还使用生物颗粒(包括腺病毒和肺衍生的细胞外囊泡)研究了互连成的微结构的颗粒捕获潜力。研究结果表明,所提出的微结构化表面可以减少包括诺如病毒、轮状病毒或 SARS-CoV-2 在内的高传染性病原体通过呼吸飞沫的间接接触污染物传播。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验