Suppr超能文献

纳米尺度下细胞外纤维素酶 TrCel7A 的水解动力学。

Nanoscale dynamics of cellulose digestion by the cellobiohydrolase TrCel7A.

机构信息

Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA.

Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA.

出版信息

J Biol Chem. 2021 Sep;297(3):101029. doi: 10.1016/j.jbc.2021.101029. Epub 2021 Jul 31.

Abstract

Understanding the mechanism by which cellulases from bacteria, fungi, and protozoans catalyze the digestion of lignocellulose is important for developing cost-effective strategies for bioethanol production. Cel7A from the fungus Trichoderma reesei is a model exoglucanase that degrades cellulose strands from their reducing ends by processively cleaving individual cellobiose units. Despite being one of the most studied cellulases, the binding and hydrolysis mechanisms of Cel7A are still debated. Here, we used single-molecule tracking to analyze the dynamics of 11,116 quantum dot-labeled TrCel7A molecules binding to and moving processively along immobilized cellulose. Individual enzyme molecules were localized with a spatial precision of a few nanometers and followed for hundreds of seconds. Most enzyme molecules bound to cellulose in a static state and dissociated without detectable movement, whereas a minority of molecules moved processively for an average distance of 39 nm at an average speed of 3.2 nm/s. These data were integrated into a three-state model in which TrCel7A molecules can bind from solution into either static or processive states and can reversibly switch between states before dissociating. From these results, we conclude that the rate-limiting step for cellulose degradation by Cel7A is the transition out of the static state, either by dissociation from the cellulose surface or by initiation of a processive run. Thus, accelerating the transition of Cel7A out of its static state is a potential avenue for improving cellulase efficiency.

摘要

了解细菌、真菌和原生动物来源的纤维素酶催化木质纤维素消化的机制对于开发具有成本效益的生物乙醇生产策略非常重要。里氏木霉的 Cel7A 是一种外切葡聚糖酶模型,通过连续切割单个纤维二糖单元从其还原端降解纤维素链。尽管 Cel7A 是研究最多的纤维素酶之一,但它的结合和水解机制仍存在争议。在这里,我们使用单分子跟踪技术分析了 11116 个量子点标记的 TrCel7A 分子与固定化纤维素结合并沿其进行连续运动的动力学。通过将酶分子与纤维素结合的过程可视化,我们发现大多数酶分子以静态状态结合在纤维素上,并在没有可检测运动的情况下解离,而少数分子以平均速度 3.2nm/s 连续移动平均距离 39nm。这些数据被整合到一个三态模型中,其中 TrCel7A 分子可以从溶液中结合到静态或连续状态,并且在解离之前可以在状态之间可逆切换。根据这些结果,我们得出结论,Cel7A 降解纤维素的限速步骤是从静态状态中脱离,要么从纤维素表面解离,要么开始连续运行。因此,加速 Cel7A 脱离其静态状态的转变是提高纤维素酶效率的一个潜在途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac35/8390518/fe18884232c0/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验