Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Worcester, MA, 01605, USA.
Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA.
Ann Biomed Eng. 2021 Oct;49(10):2777-2790. doi: 10.1007/s10439-021-02840-w. Epub 2021 Aug 2.
Conventional kinematics-based brain injury metrics often approximate peak maximum principal strain (MPS) of the whole brain but ignore the anatomical location of occurrence. In this study, we develop effective impact kinematics consisting of peak rotational velocity and the associated rotational axis to preserve not only peak MPS but also spatially detailed MPS. A pre-computed brain response atlas (pcBRA) serves as a common reference. A training dataset (N = 3069) is used to develop a convolutional neural network (CNN) to automate impact simplification. When preserving peak MPS alone, the CNN-estimated effective peak rotational velocity achieves a coefficient of determination ([Formula: see text]) of ~ 0.96 relative to the directly identified counterpart, far outperforming nominal peak velocity from the resultant profiles ([Formula: see text] of ~ 0.34). Impacts from a subset of data (N = 1900) are also successfully matched with pcBRA idealized impacts based on elementwise MPS, where their regression slope and Pearson correlation coefficient do not deviate from 1.0 (when identical) by more than 0.1. The CNN-estimated effective peak rotation velocity and rotational axis are sufficiently accurate for ~ 73.5% of the impacts. This is not possible for the nominal peak velocity or any other conventional injury metric. The performance may be further improved by expanding the pcBRA to include deceleration and focusing on region-wise strains. This study establishes a new avenue to reduce an arbitrary head impact into an idealized but actual "impact mode" characterized by triplets of basic kinematic variables. They retain specific physical interpretations of head impact and may be an advancement over state-of-the-art kinematics-based scalar metrics for more effective impact comparison in the future.
传统基于运动学的脑损伤指标通常近似于整个大脑的最大主应变峰值 (MPS),但忽略了发生的解剖位置。在这项研究中,我们开发了有效的冲击运动学,包括峰值旋转速度和相关的旋转轴,不仅保留了峰值 MPS,还保留了空间详细的 MPS。预计算的大脑响应图谱 (pcBRA) 用作共同参考。使用训练数据集 (N = 3069) 开发卷积神经网络 (CNN) 以自动简化冲击。当仅保留峰值 MPS 时,CNN 估计的有效峰值旋转速度相对于直接识别的对应物达到了 ~ 0.96 的决定系数 ([公式:见文本]),远远优于来自结果图谱的名义峰值速度 ([公式:见文本]为 ~ 0.34)。还根据元素 MPS 将来自数据子集 (N = 1900) 的冲击与 pcBRA 理想化冲击成功匹配,它们的回归斜率和 Pearson 相关系数不偏离 1.0 (当相同时)超过 0.1。CNN 估计的有效峰值旋转速度和旋转轴对于大约 73.5% 的冲击足够准确。对于名义峰值速度或任何其他常规损伤指标,这是不可能的。通过扩展 pcBRA 以包括减速并专注于区域应变,可以进一步提高性能。本研究为将任意头部冲击简化为以基本运动学变量三元组为特征的理想化但实际的“冲击模式”开辟了新途径。它们保留了头部冲击的特定物理解释,并且可能比基于运动学的最新标量指标更先进,在未来可以更有效地进行冲击比较。