Suppr超能文献

一种基于田间、气象和卫星数据的综合方法,用于监测玉米物候。

An integrated approach of field, weather, and satellite data for monitoring maize phenology.

机构信息

Department of Agronomy, 2004 Throckmorton Plant Science Center, Kansas State University, 1712 Claflin Road, Manhattan, KS, 66506, USA.

Sustainable Intensification Innovation Lab, Kansas State University, 108 Waters Hall, 1603 Old Claflin Place, Manhattan, KS, 66506, USA.

出版信息

Sci Rep. 2021 Aug 3;11(1):15711. doi: 10.1038/s41598-021-95253-7.

Abstract

Efficient, more accurate reporting of maize (Zea mays L.) phenology, crop condition, and progress is crucial for agronomists and policy makers. Integration of satellite imagery with machine learning models has shown great potential to improve crop classification and facilitate in-season phenological reports. However, crop phenology classification precision must be substantially improved to transform data into actionable management decisions for farmers and agronomists. An integrated approach utilizing ground truth field data for maize crop phenology (2013-2018 seasons), satellite imagery (Landsat 8), and weather data was explored with the following objectives: (i) model training and validation-identify the best combination of spectral bands, vegetation indices (VIs), weather parameters, geolocation, and ground truth data, resulting in a model with the highest accuracy across years at each season segment (step one) and (ii) model testing-post-selection model performance evaluation for each phenology class with unseen data (hold-out cross-validation) (step two). The best model performance for classifying maize phenology was documented when VIs (NDVI, EVI, GCVI, NDWI, GVMI) and vapor pressure deficit (VPD) were used as input variables. This study supports the integration of field ground truth, satellite imagery, and weather data to classify maize crop phenology, thereby facilitating foundational decision making and agricultural interventions for the different members of the agricultural chain.

摘要

高效、准确地报告玉米(Zea mays L.)物候、作物状况和进展对于农学家和政策制定者至关重要。卫星图像与机器学习模型的结合已显示出极大的潜力,可以提高作物分类并促进季节物候报告。然而,为了将数据转化为农民和农学家的可行管理决策,必须大大提高作物物候分类的精度。本研究采用综合方法,利用玉米物候学(2013-2018 年)的地面实况田间数据、卫星图像(Landsat 8)和天气数据,目的是:(i)模型训练和验证-确定最佳的光谱波段、植被指数(VIs)、天气参数、地理位置和地面实况数据组合,从而在每个季节段的多年中实现最高精度的模型(步骤一);(ii)模型测试-使用新数据(保留交叉验证)对每个物候类别的选定模型性能进行评估(步骤二)。当将植被指数(NDVI、EVI、GCVI、NDWI、GVMI)和蒸气压亏缺(VPD)作为输入变量时,对玉米物候分类的最佳模型性能进行了记录。本研究支持将实地地面实况、卫星图像和天气数据集成到玉米作物物候分类中,从而为农业链的不同成员提供基础决策和农业干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6f9/8333045/11ec8b170ac9/41598_2021_95253_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验