Earth Life Science Institute, Tokyo Institute of Technology, 2-21-1 IE-1 Ookayama, Meguro, Tokyo 152-8550, Japan.
Dalton Trans. 2021 Sep 14;50(34):11763-11774. doi: 10.1039/d1dt01684a. Epub 2021 Aug 4.
Under anaerobic conditions, ferrous iron reacts with sulfide producing FeS, which can then undergo a temperature, redox potential, and pH dependent maturation process resulting in the formation of oxidized mineral phases, such as greigite or pyrite. A greater understanding of this maturation process holds promise for the development of iron-sulfide catalysts, which are known to promote diverse chemical reactions, such as H, CO and NO reduction processes. Hampering the full realization of the catalytic potential of FeS, however, is an incomplete knowledge of the molecular and redox processess ocurring between mineral and nanoparticulate phases. Here, we investigated the chemical properties of iron-sulfide by cyclic voltammetry, Raman and X-ray absorption spectroscopic techniques. Tracing oxidative maturation pathways by varying electrode potential, nanoparticulate n(FeS) was found to oxidize to a Fe containing FeS phase at -0.5 V vs. Ag/AgCl (pH = 7). In a subsequent oxidation, polysulfides are proposed to give a material that is composed of Fe, Fe, S and polysulfide (S) species, with its composition described as FeFeS(S). Thermodynamic properties of model compounds calculated by density functional theory indicate that ligand oxidation occurs in conjunction with structural rearrangements, whereas metal oxidation may occur prior to structural rearrangement. These findings together point to the existence of a metastable FeS phase located at the junction of a metal-based oxidation path between FeS and greigite (FeFeS) and a ligand-based oxidation path between FeS and pyrite (Fe(S)).
在厌氧条件下,二价铁与硫离子反应生成 FeS,然后 FeS 经历一个依赖温度、氧化还原电位和 pH 值的成熟过程,导致氧化矿物相的形成,如陨硫铁或黄铁矿。对这个成熟过程的更深入了解有望促进铁-硫化物催化剂的发展,因为这些催化剂已知可以促进多种化学反应,如 H、CO 和 NO 还原过程。然而,阻碍 FeS 催化潜力的充分实现的是对矿物和纳米颗粒相之间发生的分子和氧化还原过程的不完全了解。在这里,我们通过循环伏安法、拉曼和 X 射线吸收光谱技术研究了硫化亚铁的化学性质。通过改变电极电位来追踪氧化成熟途径,发现纳米颗粒 n(FeS)在 -0.5 V 相对于 Ag/AgCl(pH = 7)时氧化为含有 Fe 的 FeS 相。在随后的氧化中,多硫化物被认为会产生一种由 Fe、Fe、S 和多硫化物 (S) 组成的物质,其组成描述为 FeFeS(S)。通过密度泛函理论计算的模型化合物的热力学性质表明,配体氧化与结构重排同时发生,而金属氧化可能在结构重排之前发生。这些发现共同指出了一种亚稳的 FeS 相的存在,它位于 FeS 和陨硫铁(FeFeS)之间的金属氧化途径和 FeS 和黄铁矿(Fe(S))之间的配体氧化途径的交界处。