Ye Lingting, Duan Xiuyun, Xie Kui
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
Angew Chem Int Ed Engl. 2021 Sep 27;60(40):21746-21750. doi: 10.1002/anie.202109355. Epub 2021 Aug 31.
Oxidative dehydrogenation of ethane to ethylene is an important process in light olefin industry; however, the over-oxidation of ethane leads to low ethylene selectivity. Here, we report a novel approach to electrochemical oxidative dehydrogenation of ethane in anode in conjunction with CO reduction at cathode in a solid oxide electrolyser using a porous single-crystalline CeO electrode at 600 °C. We identify and engineer the flux and chemical states of active oxygen species that evolve from the lattice at anode surface to activate and dehydrogenate ethane to ethylene via the reaction of epoxy species. Active oxygen species (O , O and O ) at the anode surface effectively dehydrogenate ethane to ethylene, but O species tend to induce deep oxidation. We demonstrate exceptionally high ethylene selectivity of 95 % and an ethane conversion of 10 % with a durable operation of 300 h.
乙烷氧化脱氢制乙烯是轻烯烃工业中的一个重要过程;然而,乙烷的过度氧化导致乙烯选择性较低。在此,我们报道了一种在600°C下使用多孔单晶CeO电极的固体氧化物电解槽中,将阳极乙烷电化学氧化脱氢与阴极CO还原相结合的新方法。我们识别并设计了从阳极表面晶格中析出的活性氧物种的通量和化学状态,这些活性氧物种通过环氧物种的反应激活乙烷并使其脱氢生成乙烯。阳极表面的活性氧物种(O 、O 和O )能有效地将乙烷脱氢生成乙烯,但O物种倾向于引发深度氧化。我们展示了95%的超高乙烯选择性和10%的乙烷转化率,且能持续运行300小时。