Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China.
Department of Mechanical Engineering, University of South Carolina, 300 Main Street, Columbia, SC, 29208, USA.
Nat Commun. 2019 Mar 12;10(1):1173. doi: 10.1038/s41467-019-09083-3.
Conversion of methane to ethylene with high yield remains a fundamental challenge due to the low ethylene selectivity, severe carbon deposition and instability of catalysts. Here we demonstrate a conceptually different process of in situ electrochemical oxidation of methane to ethylene in a solid oxide electrolyzer under ambient pressure at 850 °C. The porous electrode scaffold with an in situ-grown metal/oxide interface enhances coking resistance and catalyst stability at high temperatures. The highest C product selectivity of 81.2% together with the highest C product concentration of 16.7% in output gas (12.1% ethylene and 4.6% ethane) is achieved while the methane conversion reaches as high as 41% in the initial pass. This strategy provides an optimal performance with no obvious degradation being observed after 100 h of high temperature operation and 10 redox cycles, suggesting a reliable electrochemical process for conversion of methane into valuable chemicals.
由于乙烯选择性低、积碳严重和催化剂不稳定性等问题,将甲烷高效转化为乙烯仍然是一个基本挑战。在这里,我们展示了一种在 850°C 常压下,在固体氧化物电解槽中通过原位电化学氧化甲烷生产乙烯的概念性方法。具有原位生长金属/氧化物界面的多孔电极支架提高了高温下的抗积碳能力和催化剂稳定性。在初始通过时,甲烷转化率高达 41%的情况下,获得了最高 81.2%的 C 产物选择性和最高 16.7%的 C 产物浓度(输出气体中 12.1%为乙烯,4.6%为乙烷)。这种策略提供了最佳的性能,在 100 小时的高温运行和 10 个氧化还原循环后没有观察到明显的降解,这表明该电化学方法是一种可靠的将甲烷转化为有价值化学品的方法。