Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973.
Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China.
Proc Natl Acad Sci U S A. 2018 Aug 14;115(33):8278-8283. doi: 10.1073/pnas.1806950115. Epub 2018 Jul 30.
Ethylene (CH) is one of the most important raw materials for chemical industry. The tandem reactions of CO-assisted dehydrogenation of ethane (CH) to ethylene creates an opportunity to effectively use the underutilized ethane from shale gas while mitigating anthropogenic CO emissions. Here we identify the most likely active sites over CeO-supported NiFe catalysts by using combined in situ characterization with density-functional theory (DFT) calculations. The experimental and theoretical results reveal that the Ni-FeO interfacial sites can selectively break the C-H bonds and preserve the C-C bond of CH to produce ethylene, while the Ni-CeO interfacial sites efficiently cleave all of the C-H and C-C bonds to produce synthesis gas. Controlled synthesis of the two distinct active sites enables rational enhancement of the ethylene selectivity for the CO-assisted dehydrogenation of ethane.
乙烯(CH)是化学工业最重要的原材料之一。通过 CO 辅助乙烷(CH)脱氢的串联反应,为有效利用页岩气中未充分利用的乙烷并减少人为 CO 排放创造了机会。在这里,我们通过结合原位表征和密度泛函理论(DFT)计算,确定了 CeO 负载的 NiFe 催化剂上最有可能的活性位。实验和理论结果表明,Ni-FeO 界面位可选择性地断裂 CH 的 C-H 键并保留 C-C 键以生成乙烯,而 Ni-CeO 界面位可有效地断裂所有 C-H 和 C-C 键以生成合成气。这两种不同活性位的控制合成可实现对 CO 辅助乙烷脱氢反应中乙烯选择性的合理增强。