Suppr超能文献

内皮细胞 PHD2-HIF1α-PFKFB3 促进肺动脉高压右心室血管适应。

Endothelial cell PHD2-HIF1α-PFKFB3 contributes to right ventricle vascular adaptation in pulmonary hypertension.

机构信息

Department of Medicine, University of California, San Francisco, San Francisco, California.

Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2021 Oct 1;321(4):L675-L685. doi: 10.1152/ajplung.00351.2020. Epub 2021 Aug 4.

Abstract

Humans and animals with pulmonary hypertension (PH) show right ventricular (RV) capillary growth, which positively correlates with overall RV hypertrophy. However, molecular drivers of RV vascular augmentation in PH are unknown. Prolyl hydroxylase (PHD2) is a regulator of hypoxia-inducible factors (HIFs), which transcriptionally activates several proangiogenic genes, including the glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3). We hypothesized that a signaling axis of PHD2-HIF1α-PFKFB3 contributes to adaptive coupling between the RV vasculature and tissue volume to maintain appropriate vascular density in PH. We used design-based stereology to analyze endothelial cell (EC) proliferation and the absolute length of the vascular network in the RV free wall, relative to the tissue volume in mice challenged with hypoxic PH. We observed increased RV EC proliferation starting after 6 h of hypoxia challenge. Using parabiotic mice, we found no evidence for a contribution of circulating EC precursors to the RV vascular network. Mice with transgenic deletion or pharmacological inhibition of PHD2, HIF1α, or PFKFB3 all had evidence of impaired RV vascular adaptation following hypoxia PH challenge. PHD2-HIF1α-PFKFB3 contributes to structural coupling between the RV vascular length and tissue volume in hypoxic mice, consistent with homeostatic mechanisms that maintain appropriate vascular density. Activating this pathway could help augment the RV vasculature and preserve RV substrate delivery in PH, as an approach to promote RV function.

摘要

患有肺动脉高压 (PH) 的人和动物表现出右心室 (RV) 毛细血管生长,这与 RV 整体肥大呈正相关。然而,PH 中 RV 血管增生的分子驱动因素尚不清楚。脯氨酰羟化酶 (PHD2) 是缺氧诱导因子 (HIFs) 的调节剂,可转录激活几种促血管生成基因,包括糖酵解酶 6-磷酸果糖-2-激酶/果糖-2,6-二磷酸酶 3 (PFKFB3)。我们假设 PHD2-HIF1α-PFKFB3 信号轴有助于 RV 血管和组织体积之间的适应性耦合并维持 PH 中适当的血管密度。我们使用基于设计的立体学方法分析了 RV 游离壁中内皮细胞 (EC) 的增殖和血管网络的绝对长度,相对于缺氧 PH 挑战小鼠的组织体积。我们观察到,在缺氧挑战 6 小时后,RV EC 增殖开始增加。通过联体小鼠实验,我们没有发现循环 EC 前体细胞对 RV 血管网络有贡献的证据。PHD2、HIF1α 或 PFKFB3 的转基因缺失或药理学抑制的小鼠在缺氧 PH 挑战后,均表现出 RV 血管适应性受损的迹象。PHD2-HIF1α-PFKFB3 有助于缺氧小鼠 RV 血管长度与组织体积之间的结构耦联,与维持适当血管密度的稳态机制一致。激活该途径可有助于增强 RV 血管并在 PH 中维持 RV 底物输送,作为促进 RV 功能的一种方法。

相似文献

1
Endothelial cell PHD2-HIF1α-PFKFB3 contributes to right ventricle vascular adaptation in pulmonary hypertension.
Am J Physiol Lung Cell Mol Physiol. 2021 Oct 1;321(4):L675-L685. doi: 10.1152/ajplung.00351.2020. Epub 2021 Aug 4.
3
Vascular Adaptation of the Right Ventricle in Experimental Pulmonary Hypertension.
Am J Respir Cell Mol Biol. 2018 Oct;59(4):479-489. doi: 10.1165/rcmb.2018-0095OC.
4
Endothelial HIF-2α contributes to severe pulmonary hypertension due to endothelial-to-mesenchymal transition.
Am J Physiol Lung Cell Mol Physiol. 2018 Feb 1;314(2):L256-L275. doi: 10.1152/ajplung.00096.2017. Epub 2017 Oct 26.
7
Endothelial PHD2 deficiency induces apoptosis resistance and inflammation via AKT activation and AIP1 loss independent of HIF2α.
Am J Physiol Lung Cell Mol Physiol. 2024 Oct 1;327(4):L503-L519. doi: 10.1152/ajplung.00077.2024. Epub 2024 Aug 19.
9
The Endothelial Prolyl-4-Hydroxylase Domain 2/Hypoxia-Inducible Factor 2 Axis Regulates Pulmonary Artery Pressure in Mice.
Mol Cell Biol. 2016 May 2;36(10):1584-94. doi: 10.1128/MCB.01055-15. Print 2016 May 15.

引用本文的文献

1
Mitochondrial fission produces a Warburg effect via the oxidative inhibition of prolyl hydroxylase domain-2.
Redox Biol. 2025 Apr;81:103529. doi: 10.1016/j.redox.2025.103529. Epub 2025 Feb 4.
3
Glycolysis modulation: New therapeutic strategies to improve pulmonary hypertension (Review).
Int J Mol Med. 2024 Dec;54(6). doi: 10.3892/ijmm.2024.5439. Epub 2024 Oct 18.
4
Pulmonary Hypertension and Right Ventricle: A Pathophysiological Insight.
Clin Med Insights Cardiol. 2024 Sep 9;18:11795468241274744. doi: 10.1177/11795468241274744. eCollection 2024.
5
Unveiling the metabolic landscape of pulmonary hypertension: insights from metabolomics.
Respir Res. 2024 May 28;25(1):221. doi: 10.1186/s12931-024-02775-5.
9
PFKFB3 Inhibits Fructose Metabolism in Pulmonary Microvascular Endothelial Cells.
Am J Respir Cell Mol Biol. 2023 Sep;69(3):340-354. doi: 10.1165/rcmb.2022-0443OC.

本文引用的文献

1
Mice with a specific deficiency of Pfkfb3 in myeloid cells are protected from hypoxia-induced pulmonary hypertension.
Br J Pharmacol. 2021 Mar;178(5):1055-1072. doi: 10.1111/bph.15339. Epub 2021 Feb 1.
2
Suppression of HIF2 signalling attenuates the initiation of hypoxia-induced pulmonary hypertension.
Eur Respir J. 2019 Dec 12;54(6). doi: 10.1183/13993003.00378-2019. Print 2019 Dec.
3
Th2 CD4 T Cells Are Necessary and Sufficient for Schistosoma-Pulmonary Hypertension.
J Am Heart Assoc. 2019 Aug 6;8(15):e013111. doi: 10.1161/JAHA.119.013111. Epub 2019 Jul 24.
4
PFKFB3-mediated endothelial glycolysis promotes pulmonary hypertension.
Proc Natl Acad Sci U S A. 2019 Jul 2;116(27):13394-13403. doi: 10.1073/pnas.1821401116. Epub 2019 Jun 18.
5
SU5416 does not attenuate early RV angiogenesis in the murine chronic hypoxia PH model.
Respir Res. 2019 Jun 17;20(1):123. doi: 10.1186/s12931-019-1079-x.
7
Vascular Adaptation of the Right Ventricle in Experimental Pulmonary Hypertension.
Am J Respir Cell Mol Biol. 2018 Oct;59(4):479-489. doi: 10.1165/rcmb.2018-0095OC.
8
Endothelial Cell Metabolism.
Physiol Rev. 2018 Jan 1;98(1):3-58. doi: 10.1152/physrev.00001.2017.
10
Right Ventricle Vasculature in Human Pulmonary Hypertension Assessed by Stereology.
Am J Respir Crit Care Med. 2017 Oct 15;196(8):1075-1077. doi: 10.1164/rccm.201702-0425LE.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验