Suppr超能文献

PFKFB3 抑制肺微血管内皮细胞中的果糖代谢。

PFKFB3 Inhibits Fructose Metabolism in Pulmonary Microvascular Endothelial Cells.

机构信息

Department of Physiology and Cell Biology.

Division of Pulmonary and Critical Care Medicine.

出版信息

Am J Respir Cell Mol Biol. 2023 Sep;69(3):340-354. doi: 10.1165/rcmb.2022-0443OC.

Abstract

Pulmonary microvascular endothelial cells contribute to the integrity of the lung gas exchange interface, and they are highly glycolytic. Although glucose and fructose represent discrete substrates available for glycolysis, pulmonary microvascular endothelial cells prefer glucose over fructose, and the mechanisms involved in this selection are unknown. 6-Phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3) is an important glycolytic enzyme that drives glycolytic flux against negative feedback and links glycolytic and fructolytic pathways. We hypothesized that PFKFB3 inhibits fructose metabolism in pulmonary microvascular endothelial cells. We found that PFKFB3 knockout cells survive better than wild-type cells in fructose-rich medium under hypoxia. Seahorse assays, lactate and glucose measurements, and stable isotope tracing showed that PFKFB3 inhibits fructose-hexokinase-mediated glycolysis and oxidative phosphorylation. Microarray analysis revealed that fructose upregulates PFKFB3, and PFKFB3 knockout cells increase fructose-specific GLUT5 (glucose transporter 5) expression. Using conditional endothelial-specific PFKFB3 knockout mice, we demonstrated that endothelial PFKFB3 knockout increases lung tissue lactate production after fructose gavage. Last, we showed that pneumonia increases fructose in BAL fluid in mechanically ventilated ICU patients. Thus, PFKFB3 knockout increases GLUT5 expression and the hexokinase-mediated fructose use in pulmonary microvascular endothelial cells that promotes their survival. Our findings indicate that PFKFB3 is a molecular switch that controls glucose versus fructose use in glycolysis and help better understand lung endothelial cell metabolism during respiratory failure.

摘要

肺微血管内皮细胞有助于肺气体交换界面的完整性,并且它们具有高度的糖酵解能力。虽然葡萄糖和果糖是糖酵解的两种不同底物,但肺微血管内皮细胞优先选择葡萄糖而非果糖,而涉及这种选择的机制尚不清楚。6-磷酸果糖-2-激酶/果糖-2,6-二磷酸酶 3(PFKFB3)是一种重要的糖酵解酶,它可以在负反馈下驱动糖酵解通量,并将糖酵解和果糖分解途径联系起来。我们假设 PFKFB3 抑制肺微血管内皮细胞中的果糖代谢。我们发现,在缺氧条件下富含果糖的培养基中,PFKFB3 敲除细胞比野生型细胞更能存活。 Seahorse 测定、乳酸和葡萄糖测量以及稳定同位素示踪表明,PFKFB3 抑制果糖-己糖激酶介导的糖酵解和氧化磷酸化。微阵列分析显示,果糖上调 PFKFB3,而 PFKFB3 敲除细胞增加果糖特异性 GLUT5(葡萄糖转运蛋白 5)的表达。使用条件性内皮特异性 PFKFB3 敲除小鼠,我们证明内皮 PFKFB3 敲除增加了果糖灌胃后肺组织的乳酸产量。最后,我们表明肺炎增加了机械通气 ICU 患者 BAL 液中的果糖。因此,PFKFB3 敲除增加了肺微血管内皮细胞中 GLUT5 的表达和己糖激酶介导的果糖利用,从而促进了它们的存活。我们的研究结果表明,PFKFB3 是一种分子开关,可控制糖酵解中葡萄糖与果糖的利用,并有助于更好地理解呼吸衰竭期间肺内皮细胞的代谢。

相似文献

4
PFKFB3-mediated endothelial glycolysis promotes pulmonary hypertension.PFKFB3 介导的内皮细胞糖酵解促进肺动脉高压。
Proc Natl Acad Sci U S A. 2019 Jul 2;116(27):13394-13403. doi: 10.1073/pnas.1821401116. Epub 2019 Jun 18.
5
[ Affects the Function of Pulmonary Vascular Endothelial Cells].[影响肺血管内皮细胞的功能]
Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2024 Feb;46(1):1-10. doi: 10.3881/j.issn.1000-503X.15831.

本文引用的文献

2
Contribution of fatty acid oxidation to the pathogenesis of pulmonary hypertension.脂肪酸氧化在肺动脉高压发病机制中的作用。
Am J Physiol Lung Cell Mol Physiol. 2022 Sep 1;323(3):L355-L371. doi: 10.1152/ajplung.00039.2022. Epub 2022 Jun 28.
7
Endothelial metabolism in pulmonary vascular homeostasis and acute respiratory distress syndrome.肺血管稳态和急性呼吸窘迫综合征中的内皮代谢。
Am J Physiol Lung Cell Mol Physiol. 2021 Aug 1;321(2):L358-L376. doi: 10.1152/ajplung.00131.2021. Epub 2021 Jun 23.
8
Fructose and metabolic diseases: too much to be good.果糖与代谢疾病:过犹不及。
Chin Med J (Engl). 2021 May 18;134(11):1276-1285. doi: 10.1097/CM9.0000000000001545.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验