Suppr超能文献

PHD2 缺失在内皮或动脉平滑肌细胞中揭示了肺动脉高压和纤维化中的血管细胞类型特异性反应。

PHD2 deletion in endothelial or arterial smooth muscle cells reveals vascular cell type-specific responses in pulmonary hypertension and fibrosis.

机构信息

Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.

Biocenter Oulu, University of Oulu, Oulu, Finland.

出版信息

Angiogenesis. 2022 May;25(2):259-274. doi: 10.1007/s10456-021-09828-z. Epub 2022 Jan 8.

Abstract

Hypoxia plays an important regulatory role in the vasculature to adjust blood flow to meet metabolic requirements. At the level of gene transcription, the responses are mediated by hypoxia-inducible factor (HIF) the stability of which is controlled by the HIF prolyl 4-hydroxylase-2 (PHD2). In the lungs hypoxia results in vasoconstriction, however, the pathophysiological relevance of PHD2 in the major arterial cell types; endothelial cells (ECs) and arterial smooth muscle cells (aSMCs) in the adult vasculature is incompletely characterized. Here, we investigated PHD2-dependent vascular homeostasis utilizing inducible deletions of PHD2 either in ECs (Phd2) or in aSMCs (Phd2). Cardiovascular function and lung pathologies were studied using echocardiography, Doppler ultrasonography, intraventricular pressure measurement, histological, ultrastructural, and transcriptional methods. Cell intrinsic responses were investigated in hypoxia and in conditions mimicking hypertension-induced hemodynamic stress. Phd2 resulted in progressive pulmonary disease characterized by a thickened respiratory basement membrane (BM), alveolar fibrosis, increased pulmonary artery pressure, and adaptive hypertrophy of the right ventricle (RV). A low oxygen environment resulted in alterations in cultured ECs similar to those in Phd2 mice, involving BM components and vascular tone regulators favoring the contraction of SMCs. In contrast, Phd2 resulted in elevated RV pressure without alterations in vascular tone regulators. Mechanistically, PHD2 inhibition in aSMCs involved  actin polymerization -related tension development via activated cofilin. The results also indicated that hemodynamic stress, rather than PHD2-dependent hypoxia response alone, potentiates structural remodeling of the extracellular matrix in the pulmonary microvasculature and respiratory failure.

摘要

缺氧在血管中发挥重要的调节作用,以调节血流量以满足代谢需求。在基因转录水平,这些反应由缺氧诱导因子(HIF)介导,其稳定性由 HIF 脯氨酰 4-羟化酶-2(PHD2)控制。在肺部,缺氧导致血管收缩,然而,PHD2 在成年血管中的主要动脉细胞类型,内皮细胞(ECs)和动脉平滑肌细胞(aSMCs)中的病理生理相关性尚未完全阐明。在这里,我们利用 ECs(Phd2)或 aSMCs(Phd2)中 PHD2 的诱导性缺失来研究 PHD2 依赖性血管稳态。利用超声心动图、多普勒超声、心室内压测量、组织学、超微结构和转录方法研究心血管功能和肺部病变。在缺氧和模拟高血压诱导的血流动力学应激的条件下研究细胞内在反应。Phd2 导致进行性肺部疾病,其特征为呼吸基底膜(BM)增厚、肺泡纤维化、肺动脉压升高以及右心室(RV)适应性肥大。低氧环境导致培养的 ECs 发生类似于 Phd2 小鼠的改变,涉及 BM 成分和血管张力调节剂,有利于 SMC 的收缩。相比之下,Phd2 导致 RV 压力升高,而血管张力调节剂没有改变。从机制上讲,aSMCs 中的 PHD2 抑制涉及肌动蛋白聚合相关张力通过激活的 cofilin 产生。结果还表明,血流动力学应激而非单独依赖 PHD2 的缺氧反应,增强了肺部微血管和呼吸衰竭中细胞外基质的结构重塑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe5f/9054891/1bbc7eca3ae7/10456_2021_9828_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验