Wang Dongyang, Lai Yuhang, Wang Peng, Leng Xuebing, Xiao Jie, Deng Liang
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China.
J Am Chem Soc. 2021 Aug 18;143(32):12847-12856. doi: 10.1021/jacs.1c06583. Epub 2021 Aug 4.
Metal-catalyzed hydrosilylation of alkynes is an ideal atom-economic method to prepare vinylsilanes that are useful reagents in the organic synthesis and silicone industry. Although great success has been made in the preparation of β-vinylsilanes by metal-catalyzed hydrosilylation reactions of alkynes, reported metal-catalyzed reactions for the synthesis of α-vinylsilanes suffer from narrow substrate scope and/or poor selectivity. Herein, we present selective Markovnikov hydrosilylation reactions of terminal alkynes with tertiary silanes using a dicobalt carbonyl -heterocyclic carbene (NHC) complex [(IPr)Co(CO)] (IPr = 1,3-di(2,6-diisopropylphenyl)imidazol-2-ylidene) as catalyst. This cobalt catalyst effects the hydrosilylation of both alkyl- and aryl-substituted terminal alkynes with a variety of tertiary silanes with good functional group compatibility, furnishing α-vinylsilanes with high yields and high / selectivity. Mechanistic study revealed that the stoichiometric reactions of [(IPr)Co(CO)] with PhC≡CH and HSiEt can furnish the dinuclear cobalt alkyne and mononuclear cobalt silyl complexes [(IPr)(CO)Co(μ-η:η-HCCPh)Co(CO)], [(IPr)(CO)Co(μ-η:η-HCCPh)Co(CO)(IPr)], and [(IPr)Co(CO)(SiEt)], respectively. Both dicobalt bridging alkyne complexes can react with HSiEt to yield α-triethylsilyl styrene and effect the catalytic Markovnikov hydrosilylation reaction. However, the mono(NHC) dicobalt complex [(IPr)(CO)Co(μ-η:η-HCCPh)Co(CO)] exhibits higher catalytic activity over the di(NHC)-dicobalt complexes. The cobalt silyl complex [(IPr)Co(CO)(SiEt)] is ineffective in catalyzing the hydrosilylation reaction. Deuterium labeling experiments with PhC≡CD and DSiEt indicates the -addition nature of the hydrosilylation reaction. The absence of deuterium scrambling in the hydrosilylation products formed from the catalytic reaction of PhC≡CH with a mixture of DSiEt and HSi(OEt) hints that mononuclear cobalt species are less likely the in-cycle species. These observations, in addition to the evident of nonsymmetric CoC-butterfly core in the structure of [(IPr)(CO)Co(μ-η:η-HCCPh)Co(CO)], point out that mono(IPr)-dicobalt species are the genuine catalysts for the cobalt-catalyzed hydrosilylation reaction and that the high α selectivity of the catalytic system originates from the joint play of the dicobalt carbonyl species to coordinate alkynes in the Co(μ-η:η-HCCR')Co mode and the steric demanding nature of IPr ligand.
金属催化的炔烃硅氢化反应是制备乙烯基硅烷的理想原子经济方法,乙烯基硅烷是有机合成和有机硅工业中有用的试剂。尽管通过金属催化的炔烃硅氢化反应在制备β-乙烯基硅烷方面取得了巨大成功,但报道的用于合成α-乙烯基硅烷的金属催化反应存在底物范围窄和/或选择性差的问题。在此,我们报道了使用二钴羰基-杂环卡宾(NHC)配合物[(IPr)Co(CO)](IPr = 1,3-二(2,6-二异丙基苯基)咪唑-2-亚基)作为催化剂,末端炔烃与叔硅烷的选择性马氏硅氢化反应。这种钴催化剂能使烷基和芳基取代的末端炔烃与多种叔硅烷发生硅氢化反应,具有良好的官能团兼容性,以高收率和高选择性得到α-乙烯基硅烷。机理研究表明,[(IPr)Co(CO)]与PhC≡CH和HSiEt的化学计量反应分别能生成双核钴炔烃和单核钴硅基配合物[(IPr)(CO)Co(μ-η:η-HCCPh)Co(CO)]、[(IPr)(CO)Co(μ-η:η-HCCPh)Co(CO)(IPr)]和[(IPr)Co(CO)(SiEt)]。两种双核桥连炔烃配合物都能与HSiEt反应生成α-三乙基硅基苯乙烯并实现催化马氏硅氢化反应。然而,单(NHC)双核钴配合物[(IPr)(CO)Co(μ-η:η-HCCPh)Co(CO)]比双(NHC)双核钴配合物表现出更高的催化活性。钴硅基配合物[(IPr)Co(CO)(SiEt)]在催化硅氢化反应中无效。用PhC≡CD和DSiEt进行的氘标记实验表明了硅氢化反应的 -加成性质。由PhC≡CH与DSiEt和HSi(OEt)的混合物催化反应形成的硅氢化产物中不存在氘交换,这表明单核钴物种不太可能是循环中的物种。这些观察结果,除了[(IPr)(CO)Co(μ-η:η-HCCPh)Co(CO)]结构中存在不对称CoC-蝴蝶核之外,还指出单(IPr)双核物种是钴催化硅氢化反应的真正催化剂,并且催化体系的高α选择性源于双核羰基物种以Co(μ-η:η-HCCR')Co模式配位炔烃以及IPr配体的空间位阻性质的共同作用。