Suppr超能文献

术前临床模型预测非心脏手术后心肌损伤:来自西班牙一家医院 MANAGE 队列的回顾性分析。

Preoperative clinical model to predict myocardial injury after non-cardiac surgery: a retrospective analysis from the MANAGE cohort in a Spanish hospital.

机构信息

Department of Anesthesiology and Surgical Critical Care, Ramon y Cajal University Hospital. IRYCIS, Madrid, Spain

Department of Anesthesiology and Surgical Critical Care, Ramon y Cajal University Hospital. IRYCIS, Madrid, Spain.

出版信息

BMJ Open. 2021 Aug 4;11(8):e045052. doi: 10.1136/bmjopen-2020-045052.

Abstract

OBJECTIVES

To determine preoperative factors associated to myocardial injury after non-cardiac surgery (MINS) and to develop a prediction model of MINS.

DESIGN

Retrospective analysis.

SETTING

Tertiary hospital in Spain.

PARTICIPANTS

Patients aged ≥45 years undergoing major non-cardiac surgery and with at least two measures of troponin levels within the first 3 days of the postoperative period. All patients were screened for the MANAGE trial.

PRIMARY AND SECONDARY OUTCOME MEASURES

We used multivariable logistic regression analysis to study risk factors associated with MINS and created a score predicting the preoperative risk for MINS and a nomogram to facilitate bed-side use. We used Least Absolute Shrinkage and Selection Operator method to choose the factors included in the predictive model with MINS as dependent variable. The predictive ability of the model was evaluated. Discrimination was assessed with the area under the receiver operating characteristic curve (AUC) and calibration was visually assessed using calibration plots representing deciles of predicted probability of MINS against the observed rate in each risk group and the calibration-in-the-large (CITL) and the calibration slope. We created a nomogram to facilitate obtaining risk estimates for patients at pre-anaesthesia evaluation.

RESULTS

Our cohort included 3633 patients recruited from 9 September 2014 to 17 July 2017. The incidence of MINS was 9%. Preoperative risk factors that increased the risk of MINS were age, American Status Anaesthesiology classification and vascular surgery. The predictive model showed good performance in terms of discrimination (AUC=0.720; 95% CI: 0.69 to 0.75) and calibration slope=1.043 (95% CI: 0.90 to 1.18) and CITL=0.00 (95% CI: -0.12 to 0.12).

CONCLUSIONS

Our predictive model based on routinely preoperative information is highly affordable and might be a useful tool to identify moderate-high risk patients before surgery. However, external validation is needed before implementation.

摘要

目的

确定非心脏手术后心肌损伤(MINS)相关的术前因素,并建立 MINS 的预测模型。

设计

回顾性分析。

地点

西班牙的一家三级医院。

参与者

年龄≥45 岁,接受大非心脏手术且术后 3 天内至少有 2 次肌钙蛋白水平测量值的患者。所有患者均接受了 MANAGE 试验的筛查。

主要和次要观察指标

我们使用多变量逻辑回归分析来研究与 MINS 相关的危险因素,并创建了一个预测 MINS 术前风险的评分和一个便于床边使用的列线图。我们使用最小绝对收缩和选择算子方法选择与 MINS 作为因变量的预测模型中包含的因素。评估了模型的预测能力。通过接收者操作特征曲线(AUC)下的面积来评估判别能力,通过校准图评估校准,校准图表示 MINS 预测概率的十分位数与每个风险组的观察发生率以及大校准(CITL)和校准斜率之间的关系。我们创建了一个列线图,以方便在麻醉前评估时获得患者的风险估计值。

结果

我们的队列包括 2014 年 9 月 9 日至 2017 年 7 月 17 日期间招募的 3633 名患者。MINS 的发生率为 9%。增加 MINS 风险的术前危险因素包括年龄、美国麻醉师协会(ASA)分级和血管手术。该预测模型在判别能力(AUC=0.720;95%CI:0.69 至 0.75)和校准斜率(斜率=1.043;95%CI:0.90 至 1.18)以及 CITL(斜率=0.00;95%CI:-0.12 至 0.12)方面表现良好。

结论

我们基于常规术前信息的预测模型具有较高的可负担性,可能是术前识别中高危患者的有用工具。但是,在实施之前需要进行外部验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验