Suppr超能文献

基于 CNN 的可推广信息融合的多模态数据稳健心拍检测。

Robust Heartbeat Detection From Multimodal Data via CNN-Based Generalizable Information Fusion.

出版信息

IEEE Trans Biomed Eng. 2019 Mar;66(3):710-717. doi: 10.1109/TBME.2018.2854899. Epub 2018 Jul 11.

Abstract

OBJECTIVE

Heartbeat detection remains central to cardiac disease diagnosis and management, and is traditionally performed based on electrocardiogram (ECG). To improve robustness and accuracy of detection, especially, in certain critical-care scenarios, the use of additional physiological signals such as arterial blood pressure (BP) has recently been suggested. Therefore, estimation of heartbeat location requires information fusion from multiple signals. However, reported efforts in this direction often obtain multimodal estimates somewhat indirectly, by voting among separately obtained signal-specific intermediate estimates. In contrast, we propose to directly fuse information from multiple signals without requiring intermediate estimates, and thence estimate heartbeat location in a robust manner.

METHOD

We propose as a heartbeat detector, a convolutional neural network (CNN) that learns fused features from multiple physiological signals. This method eliminates the need for hand-picked signal-specific features and ad hoc fusion schemes. Furthermore, being data-driven, the same algorithm learns suitable features from arbitrary set of signals.

RESULTS

Using ECG and BP signals of PhysioNet 2014 Challenge database, we obtained a score of 94%. Furthermore, using two ECG channels of MIT-BIH arrhythmia database, we scored 99.92%. Both those scores compare favorably with previously reported database-specific results. Also, our detector achieved high accuracy in a variety of clinical conditions.

CONCLUSION

The proposed CNN-based information fusion (CIF) algorithm is generalizable, robust and efficient in detecting heartbeat location from multiple signals.

SIGNIFICANCE

In medical signal monitoring systems, our technique would accurately estimate heartbeat locations even when only a subset of channels are reliable.

摘要

目的

心跳检测仍然是心脏病诊断和管理的核心,传统上是基于心电图(ECG)进行的。为了提高检测的稳健性和准确性,特别是在某些关键护理场景中,最近已经建议使用动脉血压(BP)等其他生理信号。因此,心跳位置的估计需要来自多个信号的信息融合。然而,在这方面的报告工作通常通过在单独获得的信号特定中间估计之间投票来间接地获得多模态估计。相比之下,我们建议直接融合来自多个信号的信息,而无需中间估计,从而以稳健的方式估计心跳位置。

方法

我们提出了一种基于卷积神经网络(CNN)的心跳检测器,该检测器从多个生理信号中学习融合特征。该方法消除了对手动选择的信号特定特征和特别融合方案的需求。此外,作为数据驱动的,相同的算法可以从任意信号集中学习合适的特征。

结果

使用 PhysioNet 2014 挑战赛数据库的 ECG 和 BP 信号,我们获得了 94%的分数。此外,使用 MIT-BIH 心律失常数据库的两个 ECG 通道,我们获得了 99.92%的分数。这两个分数均优于以前报告的特定数据库的结果。此外,我们的检测器在各种临床条件下都具有很高的准确性。

结论

所提出的基于 CNN 的信息融合(CIF)算法是通用的、稳健的,并且可以从多个信号中高效地检测心跳位置。

意义

在医疗信号监测系统中,即使只有一部分通道可靠,我们的技术也能准确估计心跳位置。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验