Hendrix Nils, Scholten Ernst, Vernhout Bastiaan, Bruijnen Stefan, Maresch Bas, de Jong Mathijn, Diepstraten Suzanne, Bollen Stijn, Schalekamp Steven, de Rooij Maarten, Scholtens Alexander, Hendrix Ward, Samson Tijs, Sharon Ong Lee-Ling, Postma Eric, van Ginneken Bram, Rutten Matthieu
Department of Radiology, Jeroen Bosch Ziekenhuis, Henri Dunantstraat 1, 5223 GZ 's-Hertogenbosch, the Netherlands (N.H., B.V., S. Bruijnen, M.d.J., W.H., T.S., M.R.); Jheronimus Academy of Data Science, 's-Hertogenbosch, the Netherlands (N.H., L.L.S.O., E.P.); Department of Imaging, Radboud University Medical Center, Nijmegen, the Netherlands (N.H., E.S., B.V., S. Bruijnen, S.S., M.d.R., W.H., B.v.G., M.R.); Department of Radiology, Ziekenhuis Gelderse Vallei, Ede, the Netherlands (B.M.); Department of Radiology, Sint Maartenskliniek, Nijmegen, the Netherlands (S.D.); Department of Radiology, Groene Hart Ziekenhuis, Gouda, the Netherlands (S. Bollen); Department of Radiology and Nuclear Medicine, Tergooi, Hilversum and Blaricum, the Netherlands (A.S.); and Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, the Netherlands (L.L.S.O., E.P.).
Radiol Artif Intell. 2021 Apr 28;3(4):e200260. doi: 10.1148/ryai.2021200260. eCollection 2021 Jul.
To compare the performance of a convolutional neural network (CNN) to that of 11 radiologists in detecting scaphoid bone fractures on conventional radiographs of the hand, wrist, and scaphoid.
At two hospitals (hospitals A and B), three datasets consisting of conventional hand, wrist, and scaphoid radiographs were retrospectively retrieved: a dataset of 1039 radiographs (775 patients [mean age, 48 years ± 23 {standard deviation}; 505 female patients], period: 2017-2019, hospitals A and B) for developing a scaphoid segmentation CNN, a dataset of 3000 radiographs (1846 patients [mean age, 42 years ± 22; 937 female patients], period: 2003-2019, hospital B) for developing a scaphoid fracture detection CNN, and a dataset of 190 radiographs (190 patients [mean age, 43 years ± 20; 77 female patients], period: 2011-2020, hospital A) for testing the complete fracture detection system. Both CNNs were applied consecutively: The segmentation CNN localized the scaphoid and then passed the relevant region to the detection CNN for fracture detection. In an observer study, the performance of the system was compared with that of 11 radiologists. Evaluation metrics included the Dice similarity coefficient (DSC), Hausdorff distance (HD), sensitivity, specificity, positive predictive value (PPV), and area under the receiver operating characteristic curve (AUC).
The segmentation CNN achieved a DSC of 97.4% ± 1.4 with an HD of 1.31 mm ± 1.03. The detection CNN had sensitivity of 78% (95% CI: 70, 86), specificity of 84% (95% CI: 77, 92), PPV of 83% (95% CI: 77, 90), and AUC of 0.87 (95% CI: 0.81, 0.91). There was no difference between the AUC of the CNN and that of the radiologists (0.87 [95% CI: 0.81, 0.91] vs 0.83 [radiologist range: 0.79-0.85]; = .09).
The developed CNN achieved radiologist-level performance in detecting scaphoid bone fractures on conventional radiographs of the hand, wrist, and scaphoid. Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning Algorithms, Feature Detection-Vision-Application Domain, Computer-Aided DiagnosisSee also the commentary by Li and Torriani in this issue.©RSNA, 2021.
比较卷积神经网络(CNN)与11名放射科医生在手部、腕部和舟状骨的传统X线片上检测舟状骨骨折的性能。
在两家医院(A医院和B医院),回顾性检索了三个由手部、腕部和舟状骨传统X线片组成的数据集:一个包含1039张X线片的数据集(775例患者[平均年龄,48岁±23{标准差};505例女性患者],时间段:2017 - 2019年,A医院和B医院)用于开发舟状骨分割CNN;一个包含3000张X线片的数据集(1846例患者[平均年龄,42岁±22;937例女性患者],时间段:2003 - 2019年,B医院)用于开发舟状骨骨折检测CNN;以及一个包含190张X线片的数据集(190例患者[平均年龄,43岁±20;77例女性患者],时间段:2011 - 2020年,A医院)用于测试完整的骨折检测系统。两个CNN依次应用:分割CNN定位舟状骨,然后将相关区域传递给检测CNN进行骨折检测。在一项观察者研究中,将该系统的性能与11名放射科医生的性能进行比较。评估指标包括骰子相似系数(DSC)、豪斯多夫距离(HD)、灵敏度、特异性、阳性预测值(PPV)和受试者操作特征曲线下面积(AUC)。
分割CNN的DSC为97.4%±1.4,HD为1.31 mm±1.03。检测CNN的灵敏度为78%(95%CI:70,86),特异性为84%(95%CI:77,92),PPV为83%(95%CI:77,90),AUC为0.87(95%CI:0.81,0.91)。CNN的AUC与放射科医生的AUC之间无差异(0.87[95%CI:0.81,0.91]对0.83[放射科医生范围:0.79 - 0.85];P = 0.09)。
所开发的CNN在手部、腕部和舟状骨的传统X线片上检测舟状骨骨折方面达到了放射科医生级别的性能。卷积神经网络(CNN)、深度学习算法、机器学习算法、特征检测 - 视觉 - 应用领域、计算机辅助诊断另见本期Li和Torriani的评论。©RSNA,2021。