Suppr超能文献

利用卷积神经网络检测舟状骨骨折

Scaphoid Fracture Detection by Using Convolutional Neural Network.

作者信息

Yang Tai-Hua, Horng Ming-Huwi, Li Rong-Shiang, Sun Yung-Nien

机构信息

Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.

Department of Orthopedic Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan.

出版信息

Diagnostics (Basel). 2022 Apr 4;12(4):895. doi: 10.3390/diagnostics12040895.

Abstract

Scaphoid fractures frequently appear in injury radiograph, but approximately 20% are occult. While there are few studies in the fracture detection of X-ray scaphoid images, their effectiveness is insignificant in detecting the scaphoid fractures. Traditional image processing technology had been applied to segment interesting areas of X-ray images, but it always suffered from the requirements of manual intervention and a large amount of computational time. To date, the models of convolutional neural networks have been widely applied to medical image recognition; thus, this study proposed a two-stage convolutional neural network to detect scaphoid fractures. In the first stage, the scaphoid bone is separated from the X-ray image using the Faster R-CNN network. The second stage uses the ResNet model as the backbone for feature extraction, and uses the feature pyramid network and the convolutional block attention module to develop the detection and classification models for scaphoid fractures. Various metrics such as recall, precision, sensitivity, specificity, accuracy, and the area under the receiver operating characteristic curve (AUC) are used to evaluate our proposed method's performance. The scaphoid bone detection achieved an accuracy of 99.70%. The results of scaphoid fracture detection with the rotational bounding box revealed a recall of 0.789, precision of 0.894, accuracy of 0.853, sensitivity of 0.789, specificity of 0.90, and AUC of 0.920. The resulting scaphoid fracture classification had the following performances: recall of 0.735, precision of 0.898, accuracy of 0.829, sensitivity of 0.735, specificity of 0.920, and AUC of 0.917. According to the experimental results, we found that the proposed method can provide effective references for measuring scaphoid fractures. It has a high potential to consider the solution of detection of scaphoid fractures. In the future, the integration of images of the anterior-posterior and lateral views of each participant to develop more powerful convolutional neural networks for fracture detection by X-ray radiograph is probably important to research.

摘要

舟状骨骨折在损伤X光片中经常出现,但约20%为隐匿性骨折。虽然关于X光舟状骨图像骨折检测的研究较少,但其在检测舟状骨骨折方面的有效性并不显著。传统图像处理技术曾被用于分割X光图像的感兴趣区域,但它总是需要人工干预且计算时间长。迄今为止,卷积神经网络模型已被广泛应用于医学图像识别;因此,本研究提出了一种两阶段卷积神经网络来检测舟状骨骨折。在第一阶段,使用Faster R-CNN网络从X光图像中分离出舟状骨。第二阶段使用ResNet模型作为特征提取的主干,并使用特征金字塔网络和卷积块注意力模块来开发舟状骨骨折的检测和分类模型。使用各种指标,如召回率、精确率、灵敏度、特异性、准确率以及接收器操作特征曲线下面积(AUC)来评估我们提出的方法的性能。舟状骨检测的准确率达到了99.70%。使用旋转边界框进行舟状骨骨折检测的结果显示,召回率为0.789,精确率为0.894,准确率为0.853,灵敏度为0.789,特异性为0.90,AUC为0.920。由此得到的舟状骨骨折分类具有以下性能:召回率为0.735,精确率为0.898,准确率为0.829,灵敏度为0.735,特异性为0.920,AUC为0.917。根据实验结果,我们发现所提出的方法可为测量舟状骨骨折提供有效的参考。它在考虑舟状骨骨折检测解决方案方面具有很高的潜力。未来,整合每个参与者的前后位和侧位图像以开发更强大的用于X光片骨折检测的卷积神经网络可能对研究很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aa2/9024757/0718225b9278/diagnostics-12-00895-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验